Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Câu 4.34 trang 182 sách bài tập Giải tích 12 Nâng cao:...

Câu 4.34 trang 182 sách bài tập Giải tích 12 Nâng cao: Biểu diễn hình học các số...

Biểu diễn hình học các số . Câu 4.34 trang 182 sách bài tập Giải tích 12 Nâng cao - Bài 3. Dạng lượng giác của số phức. Ứng dụng

Biểu diễn hình học các số 5+i  và 239+i rồi chứng minh rằng nếu các số thực a, b thỏa mãn các điều kiện 0<a<π2,0<b<π2tana=15,tanb=1239 thì 4ab=π4

Giải

Điểm M để biểu diễn số 5+i, điểm N biểu diễn số 239+i thì tan(Ox,OM)=15=tana, tan(Ox,ON ) =1239=tanb.

Do M, N nằm trong góc phần tư thứ nhất của hệ tọa độ Oxy, còn 0<a<π2, 0<b<π2 nên một acgumen của 5+ia, một acgumen của 239+ib . Từ đó một acgumen của (5+i)4239+i4ab

Ta có    (5+i)4239+i=476+480i239+i, mà (239+i)(1+i)=238+240i

Advertisements (Quảng cáo)

Nên   (5+i)4239+i=2(1+i)

Số    2(1+i) có một acgumen bằng π4

Vậy 4ab=π4+k2π (kZ).

Dễ thấy 0<b<a<π4, suy ra 4ab=π4.

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)