Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 1.48 trang 36 SBT Giải tích 12: Xét tính đơn điệu...

Bài 1.48 trang 36 SBT Giải tích 12: Xét tính đơn điệu của hàm số....

Xét tính đơn điệu của hàm số.. Bài 1.48 trang 36 Sách bài tập (SBT) Giải tích 12 - Bài 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Cho hàm số:  \(y = {{4 - x} \over {2x + 3m}}\)

a) Xét tính đơn điệu của hàm số.

b) Chứng minh rằng với mọi m, tiệm cận ngang của đồ thị (Cm) của hàm số đã cho luôn đi qua điểm \(B( - {7 \over 4}; - {1 \over 2})\) .

c) Biện luận theo m số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất.

d) Vẽ đồ thị của hàm số: \(y = |{{4 - x} \over {2x + 3}}|\)

Hướng dẫn làm bài:

Xét hàm số \(y = {{4 - x} \over {2x + 3m}}\)

a) TXĐ: \(R\backslash {\rm{\{ }} - {{3m} \over 2}{\rm{\} }}\)

      \(y’ = {{ - 2x - 3m - 2(4 - x)} \over {{{(2x + 3m)}^2}}} = {{ - 3m - 8} \over {{{(2x + 3m)}^2}}}\)   

+) Nếu \(m <  - {8 \over 3},y’ > 0\)  suy ra hàm số đồng biến trên các khoảng \(( - \infty ; - {{3m} \over 2}),( - {{3m} \over 2}; + \infty )\)

+) Nếu \(m >  - {8 \over 3},y’ < 0\) suy ra hàm số nghịch biến trên các khoảng \(( - \infty ; - {{3m} \over 2}),( - {{3m} \over 2}; + \infty )\)

+) Nếu \(m =  - {8 \over 3}\)  thì  \(y =  - {1 \over 2}\) khi \(x \ne 4\)

b) Ta có: \(\mathop {\lim }\limits_{x \to  \pm \infty } {{4 - x} \over {2x + 3m}} = \mathop {\lim }\limits_{x \to  \pm \infty } {{{4 \over x} - 1} \over {2 + {{3m} \over x}}} =  - {1 \over 2}\)

nên với mọi m, đường thẳng  \(y =  - {1 \over 2}\) là tiệm cận ngang và đi qua \(B( - {7 \over 4}; - {1 \over 2})\) .

c) Số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất là số nghiệm của phương trình \({{4 - x} \over {2x + 3m}} = x\)

Ta có: \({{4 - x} \over {2x + 3m}} = x \Leftrightarrow  4 - x = 2{x^2} + 3mx\) với \(x \ne  - {{3m} \over 2}\)

\( \Leftrightarrow  2{x^2} + (3m + 1)x - 4 = 0\) với \(x \ne  - {{3m} \over 2}\)

Advertisements (Quảng cáo)

+) Thay \(x =  - {{3m} \over 2}\) vào (*) , ta có:

\(\eqalign{
& 2.{( - {{3m} \over 2})^2} - {{9{m^2}} \over 2} - {{3m} \over 2} - 4\cr&= {{9{m^2}} \over 2} - {{9{m^2}} \over 2} - {{3m} \over 2} - 4 \ne 0 \cr & = > m \ne - {8 \over 3} \cr} \) 

Như vậy, để \(x =  - {{3m} \over 2}\) không là nghiệm của phương trình  (*), ta phải có \(m \ne  - {8 \over 3}\) .

Ta có: \(\Delta  = {(3m + 1)^2} + 32 > 0,\forall m\) . Từ đó suy ra với \(m \ne  - {8 \over 3}\) đường thẳng y = x luôn cắt (Cm) tại hai điểm phân biệt.

d) Ta có: 

\(\eqalign{
& y = |{{4 - x} \over {2x + 3}}| \cr
& = \left\{ \matrix{
{{4 - x} \over {2x + 3}},{{4 - x} \over {2x + 3}} \ge 0 \hfill \cr
- {{4 - x} \over {2x + 3}},{{4 - x} \over {2x + 3}} < 0 \hfill \cr} \right. \cr} \)

Trước hết, ta vẽ đồ thị (C) của hàm số \(y = {{4 - x} \over {2x + 3}}\) . TXĐ: \(D = R\backslash {\rm{\{ }} - {3 \over 2}{\rm{\} }}\) .

Vì \(y’ = {{ - 11} \over {{{(2x + 3)}^2}}} < 0\)  với mọi  nên hàm số nghịch biến trên các khoảng \(( - \infty ; - {3 \over 2});( - {3 \over 2}; + \infty )\).

Bảng biến thiên:

Tiệm cận đứng \(x =  - {3 \over 2}\)

Tiệm cận ngang \(y =  - {1 \over 2}\)

Đồ thị (C) đi qua các điểm \(\left( { - 2;{\rm{ }} - 6} \right),{\rm{ }}\left( { - 1;{\rm{ }}5} \right),(0;{4 \over 3}),(4;0)\)

 

Để vẽ đồ thị (C’) của hàm số  , ta giữ nguyên phần đồ thị (C) nằm phía trên trục hoành và lấy đối xứng phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)