Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Câu hỏi 4 trang 36 Giải tích 12: Khảo sát sự biến...

Câu hỏi 4 trang 36 Giải tích 12: Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = -x4+ 2×2 + 3....

Câu hỏi 4 trang 36 SGK Giải tích 12. Hàm số nghịch biến trên: (-1,0), (1, +∞).. Bài 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = -x4+ 2x2 + 3.

Bằng đồ thị, biện luận theo m số nghiệm của phương trình -x4+ 2x2 + 3 = m

1.TXĐ: D = R.

2. Sự biến thiên:

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = - \infty \cr
& \mathop {\lim }\limits_{x \to - \infty } y = - \infty \cr} \)

y’= -4x3 + 4x. Cho y’ = 0 ⇒ x = 0 hoặc x = ±1.

Bảng biến thiên

Hàm số đồng biến trên: (-∞,-1), (0,1).

Hàm số nghịch biến trên: (-1,0), (1, +∞).

Advertisements (Quảng cáo)

Hàm số đạt cực đại bằng 4 tại x = -1 và x = 1.

Hàm số đạt cực tiểu bằng 3 tại x = 0.

Đồ thị

Giải biện luận phương trình -x4+ 2x2 + 3 = m

Số giao điểm của hai đồ thị y =  -x4+ 2x2 + 3 và y = m là số nghiệm của phương trình trên.

Với m > 4. Hai đồ thị không giao nhau nên phương trình vô nghiệm.

Với m = 4 và m < 3. Hai đồ thị giao nhau tại 2 điểm phân biệt nên phương trình có hai nghiệm phân biệt.

Với m = 3. Hai đồ thị giao nhau tại 3 điểm phân biệt nên phương trình có ba nghiệm phân biệt.

Với 3 < m < 4. Hai đồ thị giao nhau tại 4 điểm phân biệt nên phương trình có bốn nghiệm phân biệt.

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)