Trang chủ Lớp 12 SBT Toán lớp 12 Bài 2.41 trang 132 SBT Giải tích 12: Giải các bất phương...

Bài 2.41 trang 132 SBT Giải tích 12: Giải các bất phương trình sau bằng đồ thị:...

Giải các bất phương trình sau bằng đồ thị. Bài 2.41 trang 132 Sách bài tập (SBT) Giải tích 12 – Bài 6. Bất phương trình mũ và bất phương trình logarit

Advertisements (Quảng cáo)

Giải các bất phương trình sau bằng đồ thị:

a) \({(\frac{1}{2})^x} < x – \frac{1}{2}\)                                                                              

b) \({(\frac{1}{3})^x} \ge x + 1\)

c) \({\log _{\frac{1}{3}}}x > 3x\)                                                                                 

d) \({\log _2}x \le 6 – x\)

Hướng dẫn làm bài:

a) Vẽ đồ thị của hàm số \(y = {(\frac{1}{2})^x}\) và đường thẳng \(y = x – \frac{1}{2}\) trên cùng một hệ trục tọa độ (H.65), ta thấy chúng cắt nhau tại điểm có hoành độ x = 1. Với x > 1 đồ thị của hàm số \(y = {(\frac{1}{2})^x}\) nằm phía dưới đường thẳng \(y = x – \frac{1}{2}\) . Vậy tập nghiệm của bất phương trình đã cho là \((1; + \infty )\)

 

b) Vẽ đồ thị của hàm số \(y = {(\frac{1}{3})^x}\) và đường thẳng y = x + 1 trên cùng một hệ trục tọa độ (H.66), ta thấy chúng cắt nhau tại điểm có hoành độ x = 0.

Khi x < 0 đồ thị của hàm số \(y = {(\frac{1}{3})^x}\) nằm phía trên đường thẳng y = x + 1. Vậy tập nghiệm của bất phương trình đã cho là \(( – \infty ;0]\)

c) Vẽ đồ thị của hàm số \(y = {\log _{\frac{1}{3}}}x\) và đường thẳng y = 3x trên cùng một hệ trục tọa độ ta thấy chúng cắt nhau tại điểm có hoành độ \(x = \frac{1}{3}\)  (H.67)

Khi \(x < \frac{1}{3}\) đồ thị của hàm số \(y = {\log _{\frac{1}{3}}}x\) nằm phía trên đường thẳng y = 3x.

Vậy tập nghiệm của bất phương trình đã cho là \(( – \infty ;\frac{1}{3})\) .

d) Vẽ đồ thị của hàm số \(y = {\log _2}x\) và đường thẳng y = 6 – x  trên cùng một hệ trục tọa độ, ta thấy chúng cắt nhau tại điểm có hoành độ x = 4 (H.68).

Khi x < 4, đồ thị của hàm số \(y = {\log _2}x\) nằm phía dưới y = 6 – x .

Vậy tập nghiệm của bất phương trình đã cho là \(( – \infty ;4]\).