Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 2.49 trang 133 SBT Giải tích 12: Tính đạo hàm của...

Bài 2.49 trang 133 SBT Giải tích 12: Tính đạo hàm của các hàm số sau:...

Tính đạo hàm của các hàm số sau. Bài 2.49 trang 133 Sách bài tập (SBT) Giải tích 12 - Ôn tập Chương II - Hàm số lũy thừa. Hàm số mũ và hàm số Lôgarit

Tính đạo hàm của các hàm số sau:

a)  \(y = \frac{1}{{{{(2 + 3x)}^2}}}\)                               

b)  \(y = \sqrt[3]{{{{(3x - 2)}^2}}}(x \ne \frac{2}{3})\)                           

c) \(y = \frac{1}{{\sqrt[3]{{3x - 7}}}}\)

d) \(y = 3{x^{ - 3}} - {\log _3}x\)                           

e) \(y = (3{x^2} - 2){\log _2}x\)                                   

g) \(y = \ln (\cos x)\)

h)  \(y = {e^x}\sin x\)                                

i) \(y = \frac{{{e^x} - {e^{ - x}}}}{x}\)     

Hướng dẫn làm bài:

Advertisements (Quảng cáo)

a) \(y’ =  - 6{(2 + 3x)^{ - 3}}\)

b) 

\(y’ = \left\{ {\begin{array}{*{20}{c}}
{2{{(3x - 2)}^{ - \frac{1}{3}}},\forall x > \frac{2}{3}}\\
{ - 2{{(2 - 3x)}^{ - \frac{1}{3}}},\forall x < \frac{2}{3}}
\end{array}} \right. = \frac{2}{{\sqrt[3]{{3x - 2}}}}(x \ne \frac{2}{3})\)

c) \(y’ =  - \frac{1}{{\sqrt[3]{{{{(3x - 7)}^4}}}}}\)

d) \(y’ =  - 9{x^{ - 4}} - \frac{1}{{x\ln 3}}\)

e) \(y’ = 6x{\log _2}x + \frac{{3{x^2} - 2}}{{x\ln 2}}\)

g) \(y’ =  - \tan x\)

h) \(y’ = {e^x}(\sin x + \cos x)\)

i) \(y’ = \frac{{x({e^x} + {e^{ - x}}) - {e^x} + {e^{ - x}}}}{{{x^2}}}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)