Cho hai hàm số:
\(f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},g(x) = \frac{{{a^x} - {a^{ - x}}}}{2}\)
a) Chứng minh rằng f(x) là hàm số chẵn, g(x) là hàm số lẻ.
b) Tìm giá trị bé nhất của f(x) trên tập xác định.
Hướng dẫn làm bài:
Advertisements (Quảng cáo)
a) Ta có tập xác định của cả hai hàm số f(x), g(x) đều là R. Mặt khác:
\(f( - x) = \frac{{{a^{ - x}} + {a^x}}}{2} = f(x),g( - x) = \frac{{{a^{ - x}} - {a^x}}}{2} = - g(x)\)
Vậy f(x) là hàm số chẵn, g(x) là hàm số lẻ.
b) Ta có: \(f(x) = \frac{{{a^x} + {a^{ - x}}}}{2} \ge \sqrt {{a^x}{a^{ - x}}} = 1,\forall x \in R\) và \(f(0) = \frac{{{a^0} + {a^0}}}{2} = 1\)
Vậy min f(x) = f(0) = 1.