Trang chủ Lớp 12 SBT Toán 12 Nâng cao Câu 2.132 trang 92 sách bài tập Giải tích 12 Nâng cao:...

Câu 2.132 trang 92 sách bài tập Giải tích 12 Nâng cao: Cho a > 3b > 0...

Cho a > 3b > 0 . Câu 2.132 trang 92 sách bài tập Giải tích 12 Nâng cao – Ôn tập chương II – Hàm số lũy thừa hàm số mũ và hàm số lôgarit

Cho a > 3b > 0 và \({a^2} + 9{b^2} = 10ab\). Chứng minh rằng

\(\log (a – 3b) – log2 = {1 \over 2}(\log a + \log b)\).

Quảng cáo

Giải

Từ \({a^2} + 9{b^2} = 10ab\) ta có \({(a – 3b)^2} = 4ab\). Lôgarit cớ số 10 hai vế, ta được

 \(log{(a – 3b)^2} = \log 4ab\)

 \( \Leftrightarrow 2log(a – 3b) = \log 4 + \log ab\)

\( \Leftrightarrow log(a – 3b) – log2 = {1 \over 2}(\log a + \log b)\).

Quảng cáo