Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Câu 2.137 trang 93 Sách BT Giải Tích 12 nâng cao: Giải...

Câu 2.137 trang 93 Sách BT Giải Tích 12 nâng cao: Giải các hệ phương trình sau:...

Giải các hệ phương trình sau:. Câu 2.137 trang 93 sách bài tập Giải tích 12 Nâng cao - Ôn tập chương II - Hàm số lũy thừa hàm số mũ và hàm số lôgarit

Giải các hệ phương trình sau:

a) \(\left\{ \matrix{{5^x}{.2^y} = 500 \hfill \cr {\log _{\sqrt 2 }}\left( {2x - y} \right) = 4 \hfill \cr}  \right.\)                                                        

b) \(\left\{ \matrix{  {\log _{27}}xy = 3{\log _{27}}x{\log _{27}}y \hfill \cr   {\log _3}{x \over y} = {{3{{\log }_3}x} \over {4{{\log }_3}y}} \hfill \cr}  \right.\)

Giải

a)

Biến đổi phương trình về dạng

\(\left\{ \matrix{ {5^x}{.2^y} = 500 \hfill \cr  2x - y = 4 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{ {5^x}{.2^{2x - 4}} = 500 \hfill \cr  y = 2x - 4 \hfill \cr}  \right.\)

\(\Leftrightarrow \left\{ \matrix{  {20^x} = {20^3} \hfill \cr  y = 2x - 4 \hfill \cr}  \right.\)

Advertisements (Quảng cáo)

\(\Leftrightarrow \left\{ \matrix{  x = 3 \hfill \cr y = 2 \hfill \cr}  \right.\)

b)

. Đưa về cùng lôgarit cơ số 3, ta có

\(\left\{ \matrix{{\log _{27}}xy = 3{\log _{27}}x.{\log _{27}}y \hfill \cr{\log _3}{x \over y} = {{3{{\log }_3}x} \over {4{{\log }_3}y}} \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{{\log _3}x + 3{\log _3}y = {\log _3}x{\log _3}y \hfill \cr{\log _3}x - {\log _3}y = {{3{{\log }_3}x} \over {4{{\log }_3}y}} \hfill \cr}  \right.\)

 Rồi đặt \(u = {\log _3}x,v = {\log _3}y\) ta được hệ phương trình \(\left\{ \matrix{u + v = uv \hfill \cr u - v = {{3u} \over {4v}} \hfill \cr}  \right.\)

Giải hệ rồi tìm x, y ta được:

 \(\left( {x;y} \right) = \left( {{1 \over 3};\sqrt 3 } \right);(x;y) = (27;3\sqrt 3 )\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: