Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA’ và DD’.
Hướng dẫn làm bài:
Ta chọn hệ trục tọa độ sao cho: C là gốc tọa độ,\(\overrightarrow {CD} = a\overrightarrow i ;\overrightarrow {CB} = a\overrightarrow j ;\overrightarrow {CC’} = a\overrightarrow k \)
Trong hệ tọa độ vừa chọn ta có: C(0; 0; 0), A’(a; a ; a), D(a,; 0;0), D’(a; 0; a)
Advertisements (Quảng cáo)
\(\overrightarrow {CA’} = (a;a;a),\overrightarrow {{\rm{DD}}’} = (0;0;a)\)
Gọi \((\alpha )\) là mặt phẳng chứa \(\overrightarrow {CA’} \) và song song với \(\overrightarrow {DD’} \) . Mặt phẳng \((\alpha )\) có vecto pháp tuyến là: \(\overrightarrow n = \overrightarrow {CA’} \wedge \overrightarrow {{\rm{DD}}’} = ({a^2}; - {a^2};0)\) hay x – y = 0
Phương trình tổng quát của \((\alpha )\) là x – y = 0.
Ta có: \(d(CA’,{\rm{DD}}’) = d(D,(\alpha )) = {{| - a|} \over {\sqrt {1 + 1 + 0} }} = {a \over {\sqrt 2 }}\)
Vậy khoảng cách giữa hai đường thẳng CA’ và DD’ là \({{a\sqrt 2 } \over 2}\)