Cho hai đường thẳng d1: \({{x - 1} \over 2} = {{y + 2} \over { - 3}} = {{z - 5} \over 4}\) và d2: \(\left\{ {\matrix{{x = 7 + 3t} \cr {y = 2 + 2t} \cr {z = 1 - 2t} \cr} } \right.\)
a) Chứng minh rằng d1 và d2 cùng nằm trong một mặt phẳng \((\alpha )\).
b) Viết phương trình của \((\alpha )\).
Hướng dẫn làm bài:
a) Ta có \(\overrightarrow {{a_{{d_1}}}} = (2; - 3;4)\) và \(\overrightarrow {{a_{{d_2}}}} = (3;2; - 2)\)
\(\overrightarrow n = \overrightarrow {{a_{{d_1}}}} \wedge \overrightarrow {{a_{{d_2}}}} = ( - 2;16;13)\)
Advertisements (Quảng cáo)
Lấy điểm M1(1; -2; 5) trên d1 và điểm M2(7;2;1) trên d2.
Ta có \(\overrightarrow {{M_1}{M_2}} = (6;4; - 4)\)
\(\overrightarrow n .\overrightarrow {{M_1}{M_2}} = - 12 + 64 - 52 = 0\)
Suy ra d1 và d2 cùng nằm trong mặt phẳng \((\alpha )\)
b) Mặt phẳng \((\alpha )\) chứa M1 và có vecto pháp tuyến là \(\overrightarrow n \), vậy phương trình của \((\alpha )\) là:
\(– 2(x – 1) +16(y + 2) + 13(z – 5) = 0\) hay \(2x – 16y – 13z + 31 = 0\)