Chứng tỏ rằng phân số đã cho là số thực khi và chỉ khi z là một số thực khác – 1.. Câu 4.40 trang 211 sách bài tập (SBT) - Giải tích 12 - Ôn tập Chương IV - Số phức
Chứng tỏ rằng \({{z - 1} \over {z + 1}}\) là số thực khi và chỉ khi z là một số thực khác – 1.
Hướng dẫn làm bài
Hiển nhiên nếu \(z \in R,z \ne - 1\) thì \({{z - 1} \over {z + 1}} \in R\)
Advertisements (Quảng cáo)
Ngược lại, nếu \({{z - 1} \over {z + 1}} = a \in R\) thì \(z - 1 = az + a\) và \(a \ne 1\)
Suy ra \((1 - a)z = a + 1\Rightarrow z = {{a + 1} \over {1 - a}} \in R\) và hiển nhiên \(z \ne - 1\).