Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau:
a) y=4x−52x−3
b) y=−2x+74x−3
c) y=5x3x−7
- Đường thẳng x = a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau thoả mãn: lim
- Đường thẳng y = m được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \mathop {\lim }\limits_{x \to - \infty } f(x) = m hoặc \mathop {\lim }\limits_{x \to + \infty } f(x) = m
a) Xét y = \frac{{4x - 5}}{{2x - 3}}
Tập xác định: D = \mathbb{R}\backslash \left\{ {\frac{3}{2}} \right\}
Ta có: \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ + }} \frac{{4x - 5}}{{2x - 3}} = + \infty ; \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ - }} \frac{{4x - 5}}{{2x - 3}} = - \infty
Advertisements (Quảng cáo)
\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{4x - 5}}{{2x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{4 - \frac{5}{x}}}{{2 - \frac{3}{x}}} = 2; \mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{4x - 5}}{{2x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{4 - \frac{5}{x}}}{{2 - \frac{3}{x}}} = 2
Vậy đường thẳng x = \frac{3}{2} và y = 2 lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
b) Xét y = \frac{{ - 2x + 7}}{{4x - 3}}
Tập xác định: D = \mathbb{R}\backslash \left\{ {\frac{3}{4}} \right\}
Ta có: \mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ + }} \frac{{ - 2x + 7}}{{4x - 3}} = + \infty ; \mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ - }} \frac{{ - 2x + 7}}{{4x - 3}} = - \infty
\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x + 7}}{{4x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2 + \frac{7}{x}}}{{4 - \frac{3}{x}}} = - \frac{1}{2}; \mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 7}}{{4x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2 + \frac{7}{x}}}{{4 - \frac{3}{x}}} = - \frac{1}{2}
Vậy đường thẳng x = \frac{3}{4} và y = - \frac{1}{2} lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
c) Xét y = \frac{{5x}}{{3x - 7}}
Tập xác định: D = \mathbb{R}\backslash \left\{ {\frac{7}{3}} \right\}
Ta có: \mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ + }} \frac{{5x}}{{3x - 7}} = + \infty ; \mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ - }} \frac{{5x}}{{3x - 7}} = - \infty
\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{5x}}{{3x - 7}} = \mathop {\lim }\limits_{x \to + \infty } \frac{5}{{3 - \frac{7}{x}}} = \frac{5}{3}; \mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{5x}}{{3x - 7}} = \mathop {\lim }\limits_{x \to - \infty } \frac{5}{{3 - \frac{7}{x}}} = \frac{5}{3}
Vậy đường thẳng x = \frac{7}{3} và y = \frac{5}{3} lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số