Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Bài 2 trang 24 Toán 12 tập 1 – Chân trời sáng...

Bài 2 trang 24 Toán 12 tập 1 - Chân trời sáng tạo: Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số sau...

Đường thẳng x = a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một. Vận dụng kiến thức giải bài tập 2 trang 24 SGK Toán 12 tập 1 - Chân trời sáng tạo Bài 3. Đường tiệm cận của đồ thị hàm số. Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số sau...

Question - Câu hỏi/Đề bài

Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số sau:

a) \(y = \frac{{{x^2} + 2}}{{2x - 3}}\)

b) \(y = \frac{{2{x^2} - 3x - 6}}{{x + 2}}\)

c) \(y = \frac{{2{x^2} + 9x + 11}}{{2x + 5}}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Đường thẳng x = a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau thoả mãn: \(\mathop {\lim f(x) = }\limits_{x \to {a^ - }} + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }} + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ - }} - \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }} - \infty \)

- Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to - \infty } [f(x) - (ax + b)] = 0\) hoặc \(\mathop {\lim }\limits_{x \to + \infty } [f(x) - (ax + b)] = 0\)

Answer - Lời giải/Đáp án

a) Xét \(y = \frac{{{x^2} + 2}}{{2x - 3}}\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{3}{2}} \right\}\)

Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ + }} \frac{{{x^2} + 2}}{{2x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ - }} \frac{{{x^2} + 2}}{{2x - 3}} = - \infty \)

\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 2}}{{2{x^2} - 3x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 + \frac{2}{{{x^2}}}}}{{2 - \frac{3}{x}}} = \frac{1}{2}\)

\(b = \mathop {\lim }\limits_{x \to - \infty } (y - ax) = \mathop {\lim }\limits_{x \to - \infty } (\frac{{{x^2} + 2}}{{2x - 3}} - \frac{x}{2}) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{{3x}}{2}}}{{2x - 3}} = \frac{{\frac{2}{x} + \frac{3}{2}}}{{2 - \frac{3}{x}}} = \frac{3}{4}\)

Advertisements (Quảng cáo)

Vậy đường thẳng x = \(\frac{3}{2}\) và y = \(\frac{1}{2}x - \frac{3}{4}\) lần lượt là tiệm cận đứng và tiệm cận xiên của đồ thị hàm số

b) Xét \(y = \frac{{2{x^2} - 3x - 6}}{{x + 2}}\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\)

Ta có:\(\mathop {\lim }\limits_{x \to - {2^ + }} y = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2{x^2} - 3x - 6}}{{x + 2}} = + \infty \); \(\mathop {\lim }\limits_{x \to - {2^ - }} y = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2{x^2} - 3x - 6}}{{x + 2}} = - \infty \)

\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{x^2} - 3x - 6}}{{{x^2} + 2x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 - \frac{3}{x} - \frac{6}{{{x^2}}}}}{{1 + \frac{2}{x}}} = 2\)

\(b = \mathop {\lim }\limits_{x \to - \infty } (y - ax) = \mathop {\lim }\limits_{x \to - \infty } (\frac{{2{x^2} - 3x - 6}}{{x + 2}} - 2x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 7x - 6}}{{x + 2}} = \frac{{ - 7 - \frac{6}{x}}}{{1 + \frac{2}{x}}} = - 7\)

Vậy đường thẳng x = -2 và y = \(2x - 7\) lần lượt là tiệm cận đứng và tiệm cận xiên của đồ thị hàm số

c) Xét \(y = \frac{{2{x^2} + 9x + 11}}{{2x + 5}}\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{5}{2}} \right\}\)

Ta có:\(\mathop {\lim }\limits_{x \to - {{\frac{5}{2}}^ + }} y = \mathop {\lim }\limits_{x \to - {{\frac{5}{2}}^ + }} \frac{{2{x^2} + 9x + 11}}{{2x + 5}} = + \infty \); \(\mathop {\lim }\limits_{x \to - {{\frac{5}{2}}^ - }} y = \mathop {\lim }\limits_{x \to - {{\frac{5}{2}}^ - }} \frac{{2{x^2} + 9x + 11}}{{2x + 5}} = - \infty \)

\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{x^2} + 9x + 11}}{{2{x^2} + 5x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{9}{x} + \frac{{11}}{{{x^2}}}}}{{1 + \frac{5}{x}}} = 2\)

\(b = \mathop {\lim }\limits_{x \to - \infty } (y - ax) = \mathop {\lim }\limits_{x \to - \infty } (\frac{{2{x^2} + 9x + 11}}{{2x + 5}} - 2x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x + 11}}{{2x + 5}} = \frac{{ - 1 + \frac{{11}}{x}}}{{2 + \frac{5}{x}}} = - \frac{1}{2}\)

Vậy đường thẳng x = \( - \frac{5}{2}\) và y = \(2x - \frac{1}{2}\) lần lượt là tiệm cận đứng và tiệm cận xiên của đồ thị hàm số

Advertisements (Quảng cáo)