Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Bài 7 trang 64 Toán 12 tập 1 – Chân trời sáng...

Bài 7 trang 64 Toán 12 tập 1 - Chân trời sáng tạo: Cho hình hộp ABCD. A′B′C′D′ có A(1; 0; 1), B(2; 1; 2), D(1; –1; 1), C′(4; 5; –5)...

Áp dụng tính chất 2 vecto bằng nhau. Lời giải bài tập, câu hỏi bài tập 7 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo Bài 3. Biểu thức toạ độ của các phép toán vectơ. Cho hình hộp ABCD. A′B′C′D′ có A(1; 0; 1), B(2; 1; 2), D(1; –1; 1), C′(4; 5; –5). Tìm toạ độ các đỉnh còn lại của hình hộp...

Question - Câu hỏi/Đề bài

Cho hình hộp ABCD.A′B′C′D′ có A(1; 0; 1), B(2; 1; 2), D(1; –1; 1), C′(4; 5; –5). Tìm toạ độ các đỉnh còn lại của hình hộp.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng tính chất 2 vecto bằng nhau

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Ta có: \(\overrightarrow {AB} = (1;1;1),\overrightarrow {AD} = (0; - 1;0)\)

\(\overrightarrow {AB} + \overrightarrow {AD} = (1;0;1) = \overrightarrow {AC} \Rightarrow C(2;0;2)\)

\(\overrightarrow {CC’} = (2;5; - 7)\) mà \(\overrightarrow {BB’} = \overrightarrow {CC’} \Rightarrow B'(4;6; - 5)\)

\(\overrightarrow {A’B’} = \overrightarrow {AB} \Rightarrow A'(3;5; - 6)\)

\(\overrightarrow {DD’} = \overrightarrow {CC’} \Rightarrow D'(3;4; - 6)\)

Advertisements (Quảng cáo)