Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 30 trang 103 SGK Hình học 12 Nâng cao, Viết phương...

Bài 30 trang 103 SGK Hình học 12 Nâng cao, Viết phương trình đường thẳng song song với đường thẳng và cắt cả hai đường thẳng và , biết phương trình của và là:...

Viết phương trình đường thẳng song song với đường thẳng và cắt cả hai đường thẳng và , biết phương trình của và là. Bài 30 trang 103 SGK Hình học 12 Nâng cao - Bài 3. Phương trình đường thẳng

Bài 30. Viết phương trình đường thẳng song song với đường thẳng \({d_1}\) và cắt cả hai đường thẳng \({d_2}\) và \({d_3}\), biết phương trình của \({d_1},{d_2}\) và \({d_3}\) là:

\({d_1}:\left\{ \matrix{
x = 1 \hfill \cr
y = {- 2 + 4t} \hfill \cr
z ={ 1 - t} \hfill \cr} \right.\)
\( {d_2}:{{x - 1} \over 1} = {{y + 2} \over 4} = {{z - 2} \over 3}\)
\( {d_3}:\left\{ \matrix{
x ={ - 4 + 5t’} \hfill \cr
y = {- 7 + 9t’} \hfill \cr
z = {t’} \hfill \cr} \right.\)

Đường thẳng \({d_1}\) có vectơ chỉ phương \({\overrightarrow u _1} = \left( {0;4; - 1} \right)\), \({d_2}\) có phương trình tham số là

\(\left\{ \matrix{
x = 1 + t \hfill \cr
y = - 2 + 4t \hfill \cr
z = 2 + 3t \hfill \cr} \right.\)

Advertisements (Quảng cáo)

Lấy điểm \({M_2}\left( {1 + t; - 2 + 4t;2 + 3t} \right)\) trên \({d_2}\) và \({M_3}\left( { - 4 + 5t’; - 7 + 9t’;t’} \right)\) trên \({d_3}\). Ta tìm t và t’ để \(\overrightarrow {{M_2}{M_3}} \) cùng phương với \(\overrightarrow {{u_1}} \).
Ta có \(\overrightarrow {{M_2}{M_3}}  = \left( { - 5 + 5t’ - t; - 5 + 9t’ - 4t; - 2 + t’ - 3t} \right)\), \(\overrightarrow {{M_2}{M_3}} \) cùng phương với \(\overrightarrow {{u_1}} \) khi và chỉ khi

\(\left\{ \matrix{
- 5 + 5t’ - t = 0 \hfill \cr
{{ - 5 + 9t’ - 4t} \over 4} = {{ - 2 + t’ - 3t} \over { - 1}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
t = 0 \hfill \cr
t’ = 1 \hfill \cr} \right.\)

Khi đó \({M_2}\left( {1; - 2;2} \right)\) và \(\overrightarrow {{M_2}{M_3}}  = \left( {0;4; - 1} \right)\).
Vậy \(\Delta \) qua \({M_2},{M_3}\) có phương trình:

\(\left\{ \matrix{
x = 1 \hfill \cr
y = - 2 + 4t \hfill \cr
z = 2 - t \hfill \cr} \right.\).

Rõ ràng \({M_2} \notin {d_1}\). Vậy \(\Delta \) chính là đường thẳng cần tìm.

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)