Bài 33. Cho đường cong \((C)\) có phương trình \(y = ax + b + {c \over {x - {x_o}}}\), trong đó \(a \ne 0\), \(c \ne 0\) và điểm \(I\left( {{x_o};{y_o}} \right)\) thỏa mãn: \({y_o} = a{x_o} + b\) . Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) và phương trình của \((C)\) đối với hệ tọa độ \(IXY\). Từ đó suy ra rằng \(I\) là tâm đối xứng của đường cong (\(C)\).
Ta có: \(y = ax + b + {c \over {x - {x_o}}} \Leftrightarrow y = a\left( {x - {x_o}} \right) + a{x_o} + b + {c \over {x - {x_o}}}\)
\( \Leftrightarrow y - {y_o} = a\left( {x - {x_o}} \right) + {c \over {x - {x_o}}}\)
Advertisements (Quảng cáo)
Đặt
\(\left\{ \matrix{
x - {x_o} = X \hfill \cr
y - {y_o} = Y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = X + {x_o} \hfill \cr
y = Y + {y_o} \hfill \cr} \right.\)
Đây là công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) với \(I\left( {{x_o};{y_o}} \right)\) và \(Y = X + {c \over X}\) là phương trình của \((C)\) đối với hệ tọa độ \(IXY\).
\(Y = aX + {c \over X}\) là hàm số lẻ nên đồ thị \((C)\) nhận gốc tọa độ \(I\) làm tâm đối xứng.