Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 2 trang 43 sách sgk giải tích 12: Bài 5. Khảo...

Bài 2 trang 43 sách sgk giải tích 12: Bài 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số...

Bài 2 trang 43 sách sgk giải tích 12: Bài 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc bốn sau:

Bài 2. Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc bốn sau:

a) \(y=- {x^4} + 8{x^{2}}-1\);               b) \(y= {x^4} - 2{x^2} + 2\);

c) \(y = {1 \over 2}{x^4} + {x^2} - {3 \over 2}\);                 d) \(y =  - 2{x^2} - {x^4} + 3\).

 a) Tập xác định: \(\mathbb R\) ;

Sự biến thiên:

\(y’ =-4x^3+ 16x = -4x(x^2- 4)\);

\( y’ = 0  ⇔ x = 0, x = ±2\) .

- Hàm số đồng biến trên khoảng \((-\infty;-2)\) và \((0;2)\); nghịch biến trên khoảng \((-2;0)\) và \(2;+\infty)\).

- Cực trị:

    Hàm số đạt cực đạt tại hai điểm \(x=-2\) và \(x=2\); \(y_{CĐ}=y(\pm 2)=15\).

    Hàm số đạt cực tiểu tại \(x=0\); \(y_{CT}=-1\)

- Giới hạn:

\(\mathop {\lim y}\limits_{x \to  \pm \infty }  =  - \infty \)

Bảng biến thiên :

      

Đồ thị giao \(Oy\) tại điểm \((0;-1)\)

Hàm số đã cho là hàm số chẵn nhận trục \(Oy\) làm trục đối xứng.

 Đồ thị 

b) Tập xác định: \(\mathbb R\);

Sự biến thiên:

\(y’ =4x^3- 4x = 4x(x^2- 1)\);

\(y’ = 0  ⇔ x = 0, x = ±1\) .

- Hàm số đồng biến trên khoảng \((-1;0)\) và \((1;+\infty)\); nghịch biến trên khoảng \((-\infty;-1)\)  và \((0;1)\).

- Cực trị: 

    Hàm số đạt cực đại tại \(x=0\); \(y_{CĐ}=2\).

    Hàm số đạt cực tiểu tại hai điểm \(x=-1\) và \(x=1\); \(y_{CT}=y(\pm 1)=1\).

-Giới hạn:

\(\mathop {\lim y}\limits_{x \to  \pm \infty }  =  + \infty \)

Bảng biến thiên :

      

Hàm số đã cho là hàm số chẵn nhận trục \(Oy\) làm trục đối xứng.

Advertisements (Quảng cáo)

Đồ thị giao \(Oy\) tại điểm \((0;2)\)

Đồ thị 

c) Tập xác định: \(\mathbb R\);

Sự biến thiên:

\(y’ =2x^3+ 2x = 2x(x^2+1)\);

\(y’ = 0  ⇔ x = 0\).

- Hàm số nghịch biến trên khoảng \((-\infty;0)\); đồng biến trên khoảng \((0;+\infty)\).

-Cực trị:

    Hàm số đạt cực tiểu tại \(x=0\); \(y_{CT}={-3\over 2}\)

-Giới hạn:

\(\mathop {\lim y}\limits_{x \to  \pm \infty }  =  + \infty \)

Bảng biến thiên :

 

Hàm số đã cho là hàm số chẵn, nhận trục \(Oy\) làm trục đối xứng.

Đồ thị giao \(Ox\) tại hai điểm \((-1;0)\) và \((1;0)\); giao \(Oy\) tại \((0;{-3\over 2})\).

Đồ thị như hình bên.

d) Tập xác định: \(\mathbb R\);

Sự biến thiên:

\(y’ = -4x - 4x^3= -4x(1 + x^2)\);

\(y’ = 0  ⇔ x = 0\).

- Hàm số đồng biến trên khoảng: \((-\infty;0)\); nghịch biến trên khoảng: \((0;+\infty)\).

- Cực trị: Hàm số đạt cực đạt tại \(x=0\); \(y_{CĐ}=3\).

- Giới hạn: 

\(\mathop {\lim y}\limits_{x \to  \pm \infty }  =  -\infty \)

Bảng biến thiên :

         

Hàm số đã cho là hàm chẵn, nhận trục \(Oy\) làm trục đối xứng.

Đồ thị giao \(Ox\) tại hai điểm \((1;0)\) và \((-1;0)\); giao \(Oy\) tại điểm \((0;3)\).

 Đồ thị như hình bên.

.

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)