Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 5 trang 49 sách giáo khoa hình học lớp 12: Bài...

Bài 5 trang 49 sách giáo khoa hình học lớp 12: Bài 2. Mặt cầu...

Bài 5 trang 49 sách giáo khoa hình học lớp 12: Bài 2. Mặt cầu. Bài 5. Từ một điểm M nằm nằm bên ngoài mặt cầu S( O; r) ta kẻ hai đường thẳng cắt mặt cầu lần lượt tại A, B và C, D.

Bài 5. Từ một điểm \(M\) nằm nằm bên ngoài mặt cầu \(S( O; r)\) ta kẻ hai đường thẳng cắt mặt cầu lần lượt tại \(A, B\) và \(C, D\).

a) Chứng minh rằng \(MA.MB = MC.MD\).

b) Gọi \(MO = d\). Tính \(MA.MB\) theo \(r\) và \(d\).

:

a) Gọi \((P)\) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng\((P)\) cắt mặt cầu \(S(O;r)\) theo một đường tròn tâm \(I\), là hình chiếu vuông góc của \(O\) lên mặt phẳng \((P)\).

Xét hai tam giác \(MAD\) và \(MCB\) có:

+) \(\widehat B = \widehat D\) (Hai góc cùng chắn một cung)

+) \(\widehat M\)

\( \Rightarrow \Delta MAD\) đồng dạng \(\Delta MCB\).

Advertisements (Quảng cáo)

\(\Rightarrow{{MA} \over {MC}} = {{MD} \over {MB}}\Rightarrow MA.MB=MC.MD\)

b) Đặt \(MO = d\), ta có \(OI\) vuông góc với \((P)\) và ta có:

\(O{M^2} = M{I^2} = O{I^2};O{A^2} = O{I^2} + I{A^2}\)

Hạ \(IH\) vuông góc \(AB\), ta có \(H\) là trung điểm của \(AB\).

Ta có \(MA = MH - HA\); \(MB = MH + HB = MH + HA\).

\(MA.MB = M{H^2} - H{A^2}\)

                 \(\eqalign{
& = (M{H^2} + H{I^2}) - (H{A^2} + I{H^2}) \cr
& = M{I^2} - I{A^2} \cr
& = (M{I^2} + O{I^2}) - (I{A^2} + O{I^2}) \cr
& = O{M^2} - O{A^2} \cr
& = {d^2} - {r^2} \cr} \)

Vậy \(MA.MB = {d^2} - {r^2}\).


Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)