Câu hỏi 2 trang 84 SGK Hình học 12. Đường thẳng \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow. Bài 3. Phương trình đường thẳng trong không gian
Cho đường thẳng Δ có phương trình tham số \(\left\{ \matrix{x = - 1 + 2t \hfill \cr y = 3 - 3t \hfill \cr z = 5 + 4t \hfill \cr} \right.\). Hãy tìm tọa độ của một điểm M trên Δ và tọa độ một vecto chỉ phương của Δ.
Đường thẳng \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow u = \left( {a;b;c} \right)\) làm VTCP.
Advertisements (Quảng cáo)
1 điểm M thuộc Δ là: \(M (-1; 3; 5) \) và 1 vecto chỉ phương của Δ là \(\overrightarrow a = (2, - 3,4)\)