Cho hai đường thẳng d và d’ có phương trình tham số lần lượt là: \(\left\{ \matrix{x = 3 + 2t \hfill \cr y = 6 + 4t \hfill \cr z = 4 + t \hfill \cr} \right.\) và \(\left\{ \begin{array}{l}x = 2 + t’\\y = 1 - t’\\z = 5 + 2t’\end{array} \right.\)
a) Hãy chứng tỏ điểm \(M(1; 2; 3) \) là điểm chung của \(d\) và \(d’\);
b) Hãy chứng tỏ \(d\) và \(d’\) có hai vecto chỉ phương không cùng phương.
a) - Thay tọa độ điểm \(M\) vào phương trình đường thẳng \(d\), nếu tìm được \(t\) thì \(M\) thuộc \(d\).
- Thay tọa độ điểm \(M\) vào phương trình đường thẳng \(d’\), nếu tìm được \(t’\) thì \(M\) thuộc \(d’\).
b) Tìm hai VTCP của mỗi đường thẳng và nhận xét.
Advertisements (Quảng cáo)
a) Thay tọa độ của \(M\) vào phương trình của \(d\) ta được:
\(\left\{ \begin{array}{l}1 = 3 + 2t\\2 = 6 + 4t\\3 = 4 + t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t = - 1\\t = - 1\end{array} \right. \Leftrightarrow t = - 1\)
Do đó \(M\in d\).
Thay tọa độ của \(M\) vào phương trình của \(d’\) ta được:
\(\left\{ \begin{array}{l}1 = 2 + t’\\2 = 1 - t’\\3 = 5 + 2t’\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t’ = - 1\\t’ = - 1\\t’ = - 1\end{array} \right. \Leftrightarrow t’ = - 1\)
Do đó \(M\in d’\).
Vậy \(M\) là điểm chung của \(d\) và \(d’\).
b) Ta thấy \(\overrightarrow {{u_d}} = (2,4,1);\overrightarrow {{u_d}’} = (1, - 1,2)\) là hai vecto không tỉ lệ nên hai veco đó không cùng phương.