Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Lý thuyết sự đồng biến, nghịch biến của hàm số: Bài 1....

Lý thuyết sự đồng biến, nghịch biến của hàm số: Bài 1. Sự đồng biến nghịch biến của hàm số...

Lý thuyết sự đồng biến, nghịch biến của hàm số: Bài 1. Sự đồng biến nghịch biến của hàm số. Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.

Lý thuyết sự đồng biến, nghịch biến của hàm số

Tóm tắt lý thuyết

Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.

1. Hàm số y = f(x) đồng biến (tăng) trên K ⇔ ∀x1, x∈ K, x< x2 thì f(x1) < f(x2).

  Hàm số y = f(x) nghịch biến (giảm) trên K ⇔ ∀x1, x∈ K, x< xthì f(x1) > f(x2).

2. Điều kiện cần để hàm số đơn điệu: Cho hàm số f có đạo hàm trên K.

 - Nếu f đồng biến trên K thì f'(x) ≥ 0 với mọi x ∈ K.

 - Nếu f nghịch biến trên K thì f'(x) ≤ 0 với mọi x ∈ K.

3. Điều kiện đủ để hàm số đơn điệu: cho hàm số f có đạo hàm trên K.

 - Nếu f'(x) ≥ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc k thì f

Advertisements (Quảng cáo)

đồng biến trên K.

 - Nếu f'(x) ≤ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f

nghịch biến trên K.

 - Nếu f'(x) = 0 với mọi x ∈ K thì f là hàm hằng trên K.

4. Quy tắc xét tính đơn điệu của hàm số

 a) Tìm tập xác định

 b) Tính đạo hàm f'(x). Tìm các điểm x(i= 1 , 2 .. n) mà tại đó đạo hàm bằng 0  hoặc không xác định.

 c) Sắp xếp các điểm xtheo thứ tự tăng dần và lập bảng biến thiên.

 d) Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)