Trang chủ Lớp 7 SBT Toán lớp 7 (sách cũ) Câu 64 trang 146 Sách Bài Tập (SBT) Toán lớp 7 tập...

Câu 64 trang 146 Sách Bài Tập (SBT) Toán lớp 7 tập 1: Chứng minh rằng:DB = CF....

Chứng minh rằng: a) DB = CF.. Câu 64 trang 146 Sách Bài Tập (SBT) Toán lớp 7 tập 1 - Bài 5: Trường hợp bằng nhau của tam giác góc - cạnh - góc (g.c.g)

Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ điểm F sao cho E là trung điểm của DF. Chứng minh rằng:

a) DB = CF

b) ∆BDC = ∆FCD

c) DE// BC và \(DE = {1 \over 2}BC\)

a) Xét ∆ADE và ∆CFE, ta có:

AE = CE (gt)

\(\widehat {A{\rm{ED}}} = \widehat {{\rm{CEF}}}\) (đối đỉnh)

DE = FE(gt)

Suy ra: ∆ADE = ∆CFE (c.g.c)

\( \Rightarrow \) AD = CF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: DB = CF

b) Ta có: ∆ADE = ∆CFE (chứng minh trên)

Advertisements (Quảng cáo)

\( \Rightarrow \widehat {A{\rm{D}}E} = \widehat {CF{\rm{E}}}\) (2 góc tương ứng)

\( \Rightarrow \) AD // CF (vì có cặp góc so le trong bằng nhau)

Hay AB // CF

Xét ∆DBC = ∆CDF, ta có:

BD = CF (chứng minh trên)

\(\widehat {B{\rm{D}}C} = \widehat {FC{\rm{D}}}\) (hai góc so le trong vì CF // AB)

DC cạnh chung

Suy ra: ∆BDC = ∆FCD(c. g. c)

c) Ta có: ∆BDC = ∆FCD (chứng minh trên)

Suy ra: \(\widehat {{C_1}} = \widehat {{D_1}}\) (hai góc tương ứng)

Suy ra: DE // BC (vì có hai góc so le trong bằng nhau)

BDC = ∆FCD=> BC = DF (hai cạnh tương ứng)

Mà \({\rm{D}}E = {1 \over 2}DF\left( {gt} \right)\). Vậy \({\rm{D}}E = {1 \over 2}BC\)

 

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 7 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)