Phân tích mỗi đa thức sau thành nhân tử:
a) \(25{x^2} - \frac{1}{4}\)
b) \(36{x^2} + 12xy + {y^2}\)
c) \(\frac{{{x^3}}}{2} + 4\)
d) \(27{y^3} + 27{y^2} + 9y + 1\)
Advertisements (Quảng cáo)
Ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung.
a) \(25{x^2} - \frac{1}{4} = {\left( {5x} \right)^2} - {\left( {\frac{1}{2}} \right)^2} = \left( {5x + \frac{1}{2}} \right)\left( {5x - \frac{1}{2}} \right)\)
b) \(36{x^2} + 12xy + {y^2} = {\left( {6x} \right)^2} + 2.6x.y + {y^2} = {\left( {6x + y} \right)^2}\)
c) \(\frac{{{x^3}}}{2} + 4 = \frac{1}{2}\left( {{x^3} + 8} \right) = \frac{1}{2}\left( {{x^3} + {2^3}} \right) = \frac{1}{2}\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\)
d) \(27{y^3} + 27{y^2} + 9y + 1 = {\left( {3y} \right)^3} + 3.{\left( {3y} \right)^2}.1 + 3.3y{.1^3} + {1^3} = {\left( {3y + 1} \right)^3}\)