Cho tam giác ABC cân tại A, các đường trung tuyến BM, CN cắt nhau tại G. Gọi D là điểm đối xứng với G qua M, gọi E là điểm đối xứng với G qua N. Tứ giác BEDC là hình gì ? Vì sao ?
Giải:
Ta có: G là trọng tâm của ∆ ABC
⇒ GB = 2GM (tính chất đường trung tuyến)
GC = 2GN (tính chất đường trung tuyến)
Điểm D đối xứng với điểm G qua điểm M
⇒ MG = MD hay GD = 2 GM
Suy ra: GD = GD (1)
Điểm E đối xứng với điểm G qua điểm N
Advertisements (Quảng cáo)
⇒ NG = NE hay GE = 2 GN
Suy ra: GC = GE (2)
Từ (1) và (2) suy ra tứ giác BCDE là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét ∆ BCM và ∆ CBN:
BC cạnh chung
\(\widehat {BCM} = \widehat {CBN}\) (tính chất tam giác cân)
CM = BN ( vì AB = AC)
Do đó: ∆ BCM = ∆ CBN (c.g.c)
\( \Rightarrow {\widehat B_1} = {\widehat C_1}\)⇒ ∆ GBC cân tại G ⇒ GB = GC ⇒ BD = CE
Hình bình hành BCDE có hai đường chéo bằng nhau là hình chữ nhật.