. Câu 119 trang 94 Sách bài tập (SBT) Toán 8 tập 1 - Bài 9. Hình chữ nhật
Cho tam giác ABC, đường cao AH. Gọi D, E, M theo thứ tự là trung điểm của AB, AC, BC. Chứng minh rằng tứ giác DEMH là hình thang cân.
Giải:
Vì D là trung điểm của AB (gt)
E là trung điểm của AC (gt)
nên DE là đường trung bình của tam giác ABC
⇒ DE // BC hay DE = HM
Suy ra: Tứ giác DEMH là hình thang
Advertisements (Quảng cáo)
M là trung điểm của BC (gt)
nên DM là đường trung bình của ∆ BAC
⇒ DM = \({1 \over 2}\)AC (tính chất đường trung bình của tam giác) (1)
Trong tam giác vuông AHC có\(\widehat {AHC} = {90^0}\).
HE là đường trung tuyến thuộc cạnh huyền AC.
⇒ HE = \({1 \over 2}\)AC (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: DM = HE
Vậy hình thang DEMH là hình thang cân (vì có hai đường chéo bằng nhau)