Trang chủ Lớp 8 SBT Toán lớp 8 Câu 2.3 trang 26 SBT Toán 8 tập 1: Dùng tính chất...

Câu 2.3 trang 26 SBT Toán 8 tập 1: Dùng tính chất cơ bản của phân thức chứng tỏ rằng các cặp phân thức...

Chia sẻ
Dùng tính chất cơ bản của phân thức chứng tỏ rằng các cặp phân thức sau bằng nhau. Câu 2.3 trang 26 Sách bài tập (SBT) Toán 8 tập 1 – Bài 2. Tính chất cơ bản của phân thức

Dùng tính chất cơ bản của phân thức chứng tỏ rằng các cặp phân thức sau bằng nhau:

a. \({{{x^2} + 3x + 2} \over {3x + 6}}\)và \({{2{x^2} + x – 1} \over {6x – 3}}\)

b. \({{15x – 10} \over {3{x^2} + 3x – \left( {2x + 2} \right)}}\)và \({{5{x^2} – 5x + 5} \over {{x^3} + 1}}\)

Giải:

a. \({{{x^2} + 3x + 2} \over {3x + 6}}\) \( = {{{x^2} + x + 2x + 2} \over {3\left( {x + 2} \right)}} = {{x\left( {x + 1} \right) + 2\left( {x + 1} \right)} \over {3\left( {x + 2} \right)}} = {{\left( {x + 1} \right)\left( {x + 2} \right)} \over {3\left( {x + 2} \right)}} = {{x + 1} \over 3}\)

\({{2{x^2} + x – 1} \over {6x – 3}}\) \( = {{2{x^2} + 2x – x – 1} \over {3\left( {2x – 1} \right)}} = {{2x\left( {x + 1} \right) – \left( {x + 1} \right)} \over {3\left( {2x – 1} \right)}} = {{\left( {x + 1} \right)\left( {2x – 1} \right)} \over {3\left( {2x – 1} \right)}} = {{x – 1} \over 3}\)

Quảng cáo

Vậy : \({{{x^2} + 3x + 2} \over {3x + 6}}\)= \({{2{x^2} + x – 1} \over {6x – 3}}\)

b. \({{15x – 10} \over {3{x^2} + 3x – \left( {2x + 2} \right)}}\) \( = {{5\left( {3x – 2} \right)} \over {3x\left( {x + 1} \right) – 2\left( {x + 1} \right)}} = {{5\left( {3x – 2} \right)} \over {\left( {x + 1} \right)\left( {3x – 2} \right)}} = {5 \over {x + 1}}\)

\({{5{x^2} – 5x + 5} \over {{x^3} + 1}}\) \( = {{5\left( {{x^2} – x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} – x + 1} \right)}} = {5 \over {x + 1}}\)

Vậy : \({{15x – 10} \over {3{x^2} + 3x – \left( {2x + 2} \right)}}\)= \({{5{x^2} – 5x + 5} \over {{x^3} + 1}}\)



Chia sẻ