Cho hai phân thức \({A \over B}\) và\({C \over D}\).
Chứng minh rằng có vô số cặp phân thức cùng mẫu, có dạng \({{A’} \over E}\) và \({{C’} \over E}\) thỏa mãn điều kiện \({{A’} \over E} = {A \over B}\) và \({{C’} \over E} = {C \over D}\)
Advertisements (Quảng cáo)
Với hai phân thức \({A \over B}\) và \({C \over D}\) ta có được hai phân thức cùng mẫu \({{A.D} \over {B.D}}\) và\({{C.B} \over {B.D}}\).
Ta nhân tử và mẫu của hai phân thức đó với cùng một đa thức M ≠ 0 bất kỳ, ta có hai phân thức mới cùng mẫu \({{A.D.M} \over {B.D.M}}\) và\({{C.B.M} \over {B.D.M}}\). Ta đặt B.D.M = E, A.D.M = A’, C.B.M = C’\( \Rightarrow {{A’} \over E} = {A \over {B’}}{{C’} \over E} = {C \over D}\). Vì có vô số đa thức M ≠ 0 nên ta có vô số phân thức cùng mẫu bằng hai phân thức đã cho.