Trang chủ Lớp 8 SBT Toán lớp 8 (sách cũ) Câu 31 trang 10 Sách bài tập Toán 8 tập 2: Giải...

Câu 31 trang 10 Sách bài tập Toán 8 tập 2: Giải các phương trình sau bằng cách đưa về dạng phương trình...

Giải các phương trình sau bằng cách đưa về dạng phương trình tích. Câu 31 trang 10 Sách bài tập (SBT) Toán 8 tập 2 - Bài 4. Phương trình tích

Giải các phương trình sau bằng cách đưa về dạng phương trình tích:

a. \(\left( {x - \sqrt 2 } \right) + 3\left( {{x^2} - 2} \right) = 0\)

b. \({x^2} - 5 = \left( {2x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right)\)

a. \(\left( {x - \sqrt 2 } \right) + 3\left( {{x^2} - 2} \right) = 0\)

\(\eqalign{  &  \Leftrightarrow \left( {x - \sqrt 2 } \right) + 3\left( {x + \sqrt 2 } \right)\left( {x - \sqrt 2 } \right)  \cr  &  \Leftrightarrow \left( {x - \sqrt 2 } \right)\left[ {1 + 3\left( {x + \sqrt 2 } \right)} \right] = 0  \cr  &  \Leftrightarrow \left( {x - \sqrt 2 } \right)\left( {1 + 3x + 3\sqrt 2 } \right) = 0 \cr} \)

\( \Leftrightarrow x - \sqrt 2  = 0\)hoặc \(1 + 3x + 3\sqrt 2  = 0\)

+   \(x - \sqrt 2  = 0 \Leftrightarrow x = \sqrt 2 \)

Advertisements (Quảng cáo)

+   \(1 + 3x + 3\sqrt 2  = 0 \Leftrightarrow x =  - {{1 + 3\sqrt 2 } \over 3}\)

 Vậy phương trình có nghiệm \(x = \sqrt 2 \) hoặc \(x =  - {{1 + 3\sqrt 2 } \over 3}\)

b. \({x^2} - 5 = \left( {2x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right)\)

\(\eqalign{  &  \Leftrightarrow \left( {x + \sqrt 5 } \right)\left( {x - \sqrt 5 } \right) = \left( {2x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right)  \cr  &  \Leftrightarrow \left( {x + \sqrt 5 } \right)\left( {x - \sqrt 5 } \right) - \left( {2x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right) = 0  \cr  &  \Leftrightarrow \left( {x + \sqrt 5 } \right)\left[ {\left( {x - \sqrt 5 } \right) - \left( {2x - \sqrt 5 } \right)} \right] = 0  \cr  &  \Leftrightarrow \left( {x + \sqrt 5 } \right)\left( { - x} \right) = 0 \cr} \)

\( \Leftrightarrow x + \sqrt 5  = 0\)hoặc \( - x = 0\)

+   \(x + \sqrt 5  = 0 \Leftrightarrow x =  - \sqrt 5 \)

+   \( - x = 0 \Leftrightarrow x = 0\)

 Vậy phương trình có nghiệm \(x =  - \sqrt 5 \) hoặc x = 0

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)