Trang chủ Lớp 8 SBT Toán lớp 8 (sách cũ) Câu 6.2 trang 32 Sách bài tập Toán 8 tập 1: Trong...

Câu 6.2 trang 32 Sách bài tập Toán 8 tập 1: Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện...

Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện . Câu 6.2 trang 32 Sách bài tập (SBT) Toán 8 tập 1 - Bài 6. Phép trừ các phân thức đại số

Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện :

a. \({1 \over {{x^2} + x + 1}} - Q = {1 \over {x - {x^2}}} + {{{x^2} + 2x} \over {{x^3} - 1}}\)

b. \({{2x - 6} \over {{x^3} - 3{x^2} - x + 3}} + Q = {6 \over {x - 3}} - {{2{x^2}} \over {1 - {x^2}}}\)

Advertisements (Quảng cáo)

a. \({1 \over {{x^2} + x + 1}} - Q = {1 \over {x - {x^2}}} + {{{x^2} + 2x} \over {{x^3} - 1}}\)

\(\eqalign{  & Q = {1 \over {{x^2} + x + 1}} - {1 \over {x - {x^2}}} - {{{x^2} + 2x} \over {{x^3} - 1}}  \cr  & Q = {1 \over {{x^2} + x + 1}} + {1 \over {x\left( {x - 1} \right)}} - {{{x^2} + 2x} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}  \cr  & Q = {{x\left( {x - 1} \right) + {x^2} + x + 1 - x\left( {{x^2} + 2x} \right)} \over {x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}  \cr  & Q = {{{x^2} - x + {x^2} + x + 1 - {x^3} - 2{x^2}} \over {x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{1 - {x^3}} \over {x\left( {{x^3} - 1} \right)}} = {{ - \left( {{x^3} - 1} \right)} \over {x\left( {{x^3} - 1} \right)}}  \cr  & Q =  - {1 \over x} \cr} \)

b. \({{2x - 6} \over {{x^3} - 3{x^2} - x + 3}} + Q = {6 \over {x - 3}} - {{2{x^2}} \over {1 - {x^2}}}\)

\(\eqalign{  & Q = {6 \over {x - 3}} + {{2{x^2}} \over {{x^2} - 1}} - {{2x - 6} \over {{x^3} - 3{x^2} - x + 3}}  \cr  & Q = {6 \over {x - 3}} + {{2{x^2}} \over {{x^2} - 1}} - {{2x - 6} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}}  \cr  & Q = {{6\left( {{x^2} - 1} \right) + 2{x^2}\left( {x - 3} \right) - \left( {2x - 6} \right)} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}}  \cr  & Q = {{6{x^2} - 6 + 2{x^3} - 6{x^2} - 2x + 6} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}} = {{2{x^3} - 2x} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}} = {{2x\left( {{x^2} - 1} \right)} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}}  \cr  & Q = {{2x} \over {x - 3}} \cr} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)