Trang chủ Lớp 8 Tài liệu Dạy học Toán 8 (sách cũ) Bài tập 4 trang 173 Tài liệu dạy – học Toán 8...

Bài tập 4 trang 173 Tài liệu dạy – học Toán 8 tập 1,Chứng minh rằng nếu một tam giác đều có cạnh bằng a thì diện tích bằng...

Ôn tập chương 2 - Hình học - Bài tập 4 trang 173 Tài liệu dạy – học Toán 8 tập 1. Giải bài tập a) Chứng minh rằng nếu một tam giác đều có cạnh bằng a thì diện tích bằng

a) Chứng minh rằng nếu một tam giác đều có cạnh bằng a thì diện tích bằng \({{{a^3}\sqrt 3 } \over 4}\) .

b) Tính diện tích của lục giác đều có cạnh bằng a.

 

a) Kẻ AH là đường cao của tam giác ABC

\(\Delta ABC\) đều \( \Rightarrow AH\) là đường trung tuyến

\( \Rightarrow H\) là trung điểm của BC \( \Rightarrow BH = {{BC} \over 2} = {a \over 2}\)

\(\Delta ABH\) vuông tại H có \(A{H^2} + B{H^2} = A{B^2}\) (định lí Pytago)

\( \Rightarrow A{H^2} + {{{a^2}} \over 4} = {a^2} \Rightarrow A{H^2} = {{3{a^2}} \over 4} \Rightarrow AH = {{a\sqrt 3 } \over 2}\)

\({S_{ABC}} = {1 \over 2}AH.BC = {1 \over 2}.{{a\sqrt 3 } \over 2}.a = {{{a^2}\sqrt 3 } \over 4}\)

Advertisements (Quảng cáo)

b)

 

Gọi O là tâm của lục giác đều

Ta có : \({S_{ABCDEF}} = {S_{OAB}} + {S_{OBC}} + {S_{OCD}} + {S_{ODE}} + {S_{OEF}} + {S_{OAF}}\)

\({S_{OAB}} = {S_{OBC}} = {S_{OCD}} = {S_{ODE}} = {S_{OEF}} = {S_{OAF}}\)

(vì \(\Delta OAB = \Delta OBC = \Delta OCD = \Delta ODE = \Delta OEF = \Delta OAF\))

\( \Rightarrow {S_{ABCDEF}} = 6{S_{OAB}}\)

Mà \(\Delta OAB\) đều có cạnh bằng a, nên ta có \({S_{OAB}} = {{{a^2}\sqrt 3 } \over 4}\)

Do đó \({S_{ABCDEF}} = 6.{{{a^2}\sqrt 3 } \over 4} = {{3{a^2}\sqrt 3 } \over 2}\).

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy học Toán 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)