Tìm mẫu thức chung rồi thực hiện phép tính:
a) 42+y+2y−2+5y−64−y2 ;
b) 1−3m2m+3m−22m−1+3m−22m−4m2 ;
Advertisements (Quảng cáo)
c) kk2−9+16k−9−k2+1k2+6k+9 .
a)42+y+2y−2+5y−64−y2=42+y+−22−y+5y−6(2−y)(2+y)=4(2−y)(2+y)(2−y)+−2(2+y)(2−y)(2+y)+5y−6(2−y)(2+y)=8−4y−4−2y+5y−6(2−y)(2+y)=−y−2(2−y)(2+y)=−(y+2)(2−y)(2+y)=−12−yb)1−3m2m+3m−22m−1+3m−22m−4m2=1−3m2m+−(3m−2)1−2m+3m−22m(1−2m)=(1−3m)(1−2m)2m(1−2m)+−(3m−2).2m2m(1−2m)+3m−22m(1−2m)=1−2m−3m+6m2−6m2+4m+3m−22m(1−2m)=2m−12m(1−2m)=−(1−2m)2m(1−2m)=−12mc)kk2−9+16k−9−k2+1k2+6k+9=k(k−3)(k+3)+−1(k−3)2+1(k+3)2=k(k−3)(k+3)(k−3)2(k+3)2+−(k+3)2(k−3)2(k+3)2+(k−3)2(k−3)2(k+3)2=k(k2−9)−(k2+6k+9)+(k2−6k+9)(k−3)2(k+3)2=k3−9k−k2−6k−9+k2−6k+9(k−3)2(k+3)2=k3−21k(k−3)2(k+3)2