Trang chủ Lớp 8 Tài liệu Dạy học Toán 8 (sách cũ) Bài tập 8 trang 134 Tài liệu dạy – học Toán 8...

Bài tập 8 trang 134 Tài liệu dạy – học Toán 8 tập 1, Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC....

Bài tập – Chủ đề 2 : Hình bình hành – Hình chữ nhật – Hình thoi – Hình vuông – Bài tập 8 trang 134 Tài liệu dạy – học Toán 8 tập 1. Giải bài tập Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.

Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.

a) Chứng minh tứ giác EBFD là hình bình hành.

b) Gọi O là tâm đối xứng của hình bình hành ABCD. CHứng minh rằng ba điểm E, O, F thẳng hàng.

a) Ta có :

\(ED = {1 \over 2}AD\) (E là trung điểm của AD)

\(BF = {1 \over 2}BC\) (F là trung điểm của BC)

Advertisements (Quảng cáo)

Và \(AD = BC\) (ABCD là hình bình hành)

\( \Rightarrow ED = BF\)

Mà ED // BF (AD // BC, \(E \in AD;\,\,F \in BC\))

Do đó tứ giác EBFD là hình bình hành.

b) O là tâm đối xứng của hình bình hành ABCD \( \Rightarrow O\) là trung điểm của BD

Hình bình hành EBFD có O là trung điểm của BD \( \Rightarrow O\) là trung điểm của EF.

\( \Rightarrow O \in EF\).

Vậy E, O, F thẳng hàng.