Phân tích các đa thức sau thành nhân tử:
a)\({a^2} - {b^2} - 4a + 4;\)
b) \({x^2} + 2x - 3\)
c) \(4{x^2}{y^2} - {\left( {{x^2}{y^2}} \right)^2}\)
d) \(2{a^3} - 54{b^3}\) .
Hướng dẫn làm bài:
a) \({a^2} - {b^2} - 4a + 4 \Leftrightarrow {a^2} - 4a + 4 - {b^2}\)
= \({\left( {a - 2} \right)^2} - {b^2} = \left( {a - 2 + b} \right)\left( {a - 2 - b} \right)\)
= \(\left( {a + b - 2} \right)\left( {a - b - 2} \right)\)
b) \({x^2} + 2x - 3 = {x^2} + 2x + 1 - 4\)
=\({\left( {x + 1} \right)^2} - {2^2} = \left( {x + 1 + 2} \right)\left( {x + 1 - 2} \right)\)
=\(\left( {x + 3} \right)\left( {x - 1} \right)\)
c) \(4{x^2}{y^2} - {\left( {{x^2}{y^2}} \right)^2} = {\left( {2xy} \right)^2} - {\left( {{x^2} + {y^2}} \right)^2}\)
= \(\left( {2xy - {x^2} - {y^2}} \right)\left( {2xy + {x^2} + {y^2}} \right)\)
=\( - \left( {{x^2} - 2xy + {y^2}} \right)\left( {{x^2} + 2xy + {y^2}} \right)\)
=\( - {\left( {x - y} \right)^2}{\left( {x + y} \right)^2}\)
d) \(2{a^3} - 54{b^3} = 2\left( {{a^3} - 27{b^3}} \right)\)
=\(2\left[ {{a^3} - {{\left( {3b} \right)}^3}} \right] = 2\left( {a - 3b} \right)\left( {{a^2} + 3ab + 9{b^2}} \right)\).