Trang chủ Lớp 8 Toán lớp 8 (sách cũ) Bài 3 trang 130 môn Toán 8 tập 2, Chứng minh rằng...

Bài 3 trang 130 môn Toán 8 tập 2, Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8....

Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8.. Bài 3 trang 130 sgk toán 8 tập 2 - Phần Đại số - Ôn tập cuối năm - Toán 8

Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8.

Hướng dẫn làm bài:

Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z)

Hiệu bình phương của hai số lẻ đó bằng :

\({\left( {2a{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{\left( {2b{\rm{ }} + {\rm{ }}1} \right)^2} = \left( {4{a^2} + {\rm{ }}4a{\rm{ }} + {\rm{ }}1} \right){\rm{ }}-{\rm{ }}\left( {4{b^2} + {\rm{ }}4b{\rm{ }} + 1} \right)\)

Advertisements (Quảng cáo)

\( = \left( {4{a^2} + {\rm{ }}4a} \right){\rm{ }}-{\rm{ }}\left( {4{b^2} + {\rm{ }}4b} \right){\rm{ }} = {\rm{ }}4a\left( {a{\rm{ }} + 1} \right){\rm{ }}-{\rm{ }}4b\left( {b{\rm{ }} + {\rm{ }}1} \right)\)    

Vì tích của hai số nguyên liên tiếp luôn chia hết cho 2 nên a(a+1) và b(b+1) chia hết cho 2.

Do đó 4a(a + 1) và 4b(b + 1) chia hết cho 8

4a(a + 1) – 4b(b + 1) chia hết cho 8.

Vậy \({\left( {2a{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{\left( {2b{\rm{ }} + {\rm{ }}1} \right)^2}\) chia hết cho 8.

Bạn đang xem bài tập, chương trình học môn Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)