Trang chủ Lớp 8 Toán lớp 8 (sách cũ) Bài 59 trang 62 Toán 8 tập 1, Cho biểu thức. Thay...

Bài 59 trang 62 Toán 8 tập 1, Cho biểu thức. Thay vào biểu thức đã cho rồi rút gọn biểu thức....

a)Cho biểu thức. Thay vào biểu thức đã cho rồi rút gọn biểu thức.. Bài 59 trang 62 sgk toán 8 tập 1 - Ôn tập chương II- Phân thức đại số

a) Cho biểu thức  \({{xP} \over {x + P}} - {{yP} \over {y - P}}\). Thay \(P = {{xy} \over {x - y}}\) vào biểu thức đã cho rồi rút gọn biểu thức.

b) Cho biểu thức \({{{P^2}{Q^2}} \over {{P^2} - {Q^2}}}\). Thay \(P = {{2xy} \over {{x^2} - {y^2}}}\) và \(Q = {{2xy} \over {{x^2} + {y^2}}}\)vào biểu thức đã cho rồi rút gọn biểu thức.

Hướng dẫn làm bài:      

a) Với \(P = {{xy} \over {x - y}}\)

Ta có:\({{xP} \over {x + P}} - {{yP} \over {y - P}} = {{{{{x^2}y} \over {x - y}}} \over {x + {{xy} \over {x - y}}}} - {{{{x{y^2}} \over {x - y}}} \over {y - {{xy} \over {x - y}}}}\)

=\({{{x^2}y} \over {{x^2}}} - {{x{y^2}} \over {{y^2}}} = y + x = x + y\)

Advertisements (Quảng cáo)

b) Với \(P = {{2xy} \over {{x^2} - {y^2}}}\) và \(Q = {{2xy} \over {{x^2} + {y^2}}}\)

Ta có:\({{{P^2}{Q^2}} \over {{P^2} - {Q^2}}}\)\( = {{{{\left( {{{2xy} \over {{x^2} - {y^2}}}} \right)}^2}.{{\left( {{{2xy} \over {{x^2} + {y^2}}}} \right)}^2}} \over {{{\left( {{{2xy} \over {{x^2} - {y^2}}}} \right)}^2} - {{\left( {{{2xy} \over {{x^2} + {y^2}}}} \right)}^2}}}\)\( = {{{{\left[ {{{2xy.2xy} \over {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)}}} \right]}^2}} \over {{{4{x^2}{y^2}} \over {{{\left( {{x^2} - {y^2}} \right)}^2}}} - {{4{x^2}{y^2}} \over {{{\left( {{x^2} + {y^2}} \right)}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}\left[ {{{\left( {{x^2} + {y^2}} \right)}^2} - {{\left( {{x^2} - {y^2}} \right)}^2}} \right]} \over {{{\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right]}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}.({x^4} + 2{x^2}{y^2} + {y^4} - {x^4} + 2{x^2}{y^2} - {y^4}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}.4{x^2}{y^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = {{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = 1\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)