Đường cao của một tam giác vuông chia cạnh huyền thành hai đường thẳng có độ dài là 3 và 4. Hãy tính các cạnh góc vuông của tam giác này.. Câu 7. Trang 103 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Đường cao của một tam giác vuông chia cạnh huyền thành hai đường thẳng có độ dài là 3 và 4. Hãy tính các cạnh góc vuông của tam giác này.
Giả sử tam giác ABC có: \(\widehat {BAC} = {90^0},AH \bot BC,BH = 3,CH = 4\)
Advertisements (Quảng cáo)
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
\(\eqalign{
& A{B^2} = BH.BC \cr
& = 3.(3 + 4) = 3.7 = 21 \cr
& \Rightarrow AB = \sqrt {21} \cr} \)
\(\eqalign{
& A{C^2} = CH.BC \cr
& = 4.(3 + 4) = 4.7 = 28 \cr
& \Rightarrow AC = \sqrt {28} = 2\sqrt 7 \cr} \)