Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 13 trang 103 Dạy và học Toán 9 tập 2: Cho...

Bài 13 trang 103 Dạy và học Toán 9 tập 2: Cho tứ giác ABCD ngoại tiếp một đường tròn. Chứng minh hai đường tròn nội tiếp hai tam giác ABC và ACD tiếp xúc nhau....

Bài tập - Chủ đề 3: Tứ giác nội tiếp - Bài 13 trang 103 Tài liệu dạy – học Toán 9 tập 2. Giải bài tập Cho tứ giác ABCD ngoại tiếp một đường tròn. Chứng minh hai đường tròn nội tiếp hai tam giác ABC và ACD tiếp xúc nhau.

Cho tứ giác ABCD ngoại tiếp một đường tròn. Chứng minh hai đường tròn nội tiếp hai tam giác ABC và ACD tiếp xúc nhau.

Gọi M, N lần lượt là tiếp điểm của hai đường tròn nội tiếp hai tam giác ABC và ACD với AC.

Áp dụng tính chất 2 tiếp tuyến cắt nhau chứng minh

\(\begin{array}{l}2CM = CM + CJ = AC + BC - AB\\2CN = CN + CP = AC + CD - AD\end{array}\)

Xét hiệu \(2\left( {CM - CN} \right)\), chứng minh \(2\left( {CM - CN} \right) = 0 \Rightarrow M \equiv N\).

 

Gọi E, F, G, H lần lượt là tiếp điểm của đường tròn nội tiếp tứ giác ABCD với các cạnh AB, BC, CD, DA.

Gọi I, J, M lần lượt là tiếp điểm của đường tròn nội tiếp tam giác ABC với AB, BC, AC.

Advertisements (Quảng cáo)

Gọi N, P, Q lần lượt là tiếp điểm của đường tròn nội tiếp tam giác ACD với AC, CD, AD.

Ta có:

\(2CM = CM + CJ = AC - AM + BC - BJ = AC + BC - \left( {AI + BI} \right) = AC + BC - AB\)

(Áp dụng tính chất 2 tiếp tuyến cắt nhau).

Chứng minh tương tự ta có :

\(2CN = CN + CP = AC - AN + CD - DP = AC + CD - \left( {AQ + DQ} \right) = AC + CD - AD\)

(Áp dụng tính chất 2 tiếp tuyến cắt nhau).

\(\begin{array}{l} \Rightarrow 2\left( {CM - CN} \right) = BC + AD - \left( {AB + CD} \right)\\ = BF + CF + AH + DH - AE - BE - CG - DG\\ = \left( {BF - BE} \right) + \left( {CF - CG} \right) + \left( {AH - AE} \right) + \left( {DH - DG} \right)\\ = 0\end{array}\)

(Áp dụng tính chất 2 tiếp tuyến cắt nhau).

\( \Rightarrow CM = CN \Rightarrow M \equiv N\).

Vậy hai đường trònnội tiếp hai tam giác ABC và ACD tiếp xúc nhau.

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)