Câu hỏi/bài tập:
Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình bậc hai \({x^2} - 5x + 3 = 0\). Không giải phương trình, hãy tính:
a) \(x_1^2 + x_2^2\);
b) \({\left( {{x_1} - {x_2}} \right)^2}\).
Advertisements (Quảng cáo)
a) Biến đổi \(x_1^2 + x_2^2 \) \(= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\), từ đó thay \({x_1} + {x_2} \) \(= \frac{{ - b}}{a};{x_1}.{x_2} \) \(= \frac{c}{a}\) để tính giá trị biểu thức.
b) Biến đổi \({\left( {{x_1} - {x_2}} \right)^2} \) \(= x_1^2 - 2{x_1}{x_2} + x_2^2 \) \(= {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2}\), từ đó thay \({x_1} + {x_2}= \frac{{ - b}}{a};{x_1}.{x_2}= \frac{c}{a}\) để tính giá trị biểu thức.
Theo định lí Viète ta có: \({x_1} + {x_2} \) \(= 5;{x_1}.{x_2} \) \(= 3\). Do đó:
a) \(x_1^2 + x_2^2 \) \(= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \) \(= {5^2} - 2.3 \) \(= 19\)
b) \({\left( {{x_1} - {x_2}} \right)^2} \) \(= {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} \) \(= {5^2} - 4.3 \) \(= 13\)