Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 23 trang 103 SBT Hình học 10 Nâng cao: (h.99).

Bài 23 trang 103 SBT Hình học 10 Nâng cao: (h.99)....

Bài 23 trang 103 SBT Hình học 10 Nâng cao. \(2(x + 1) - 2(y - 2) = 0\). Bài 2. Phương trình tham số của đường thẳng.

Lập phương trình các đường thẳng chứa bốn cạnh của hình vuông \(ABCD\) biết đỉnh \(A(-1 ; 2)\) và phương trình của một đường chéo là \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y =  - 2t\end{array} \right.\).

(h.99).

 

\(A \in \Delta :  \left\{ \begin{array}{l}x =  - 1 + 2t\\y =  - 2t\end{array} \right.\).

Vậy  \(B, D \in \Delta \). \(\Delta \) có vec tơ chỉ phương \(\overrightarrow u (2 ;  - 2)\) nên phương trình đường chéo \(AC\) là

\(2(x + 1) - 2(y - 2) = 0\)

\(\Leftrightarrow    x - y + 3 = 0\).

Tọa độ giao điểm \(I\) của \(AC\) và \(BD\) ứng với nghiệm t của phương trình:

\( - 1 + 2t + 2t + 3 = 0      \Leftrightarrow    t =  -  \dfrac{1}{2}\).

Advertisements (Quảng cáo)

Vậy \(I=(-2 ; 1)\). Vì \(I\) là trung điểm của \(AC\) nên \(C=(-3 ; 0)\).

\(ABCD\) là hình vuông nên \(ID=IA=IB\). Do \(B \in \Delta \) nên \(B = ( - 1 + 2t ;  - 2t)\).

\(\begin{array}{l}I{B^2} = I{A^2}   \\\Leftrightarrow    {( - 1 + 2t + 2)^2} + {( - 2t - 1)^2}\\ = {( - 1 + 2)^2} + {(2 - 1)^2}\\\Leftrightarrow {(2t + 1)^2} = 1\end{array}\)

\( \Leftrightarrow   t = 0\) hoặc \(t =  - 1\).

Suy ra \(B=(-1 ; 0)\) hoặc \(B=(-3 ; 2).\)

Nếu \(B=(-1 ; 0)\) thì \(D=(-3 ; 2),\) nếu \(B=(-3 ; 2)\) thì \(D=(-1 ; 0).\)

Đến đây, biết tọa độ bốn đỉnh của hình vuông \(ABCD\), ta sẽ dễ dàng viết được phương trình bốn cạnh của hình vuông là

\(x + 1 = 0 ;   y = 0 ; \) \(   x + 3 = 0 ;   y - 2 = 0 .\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)