Cho hai điểm phân biệt \(A, B\).
a) Hãy xác định các điểm \(P, Q, R\), biết
\(2\overrightarrow {PA} + 3\overrightarrow {PB} = \overrightarrow 0;\) \(- 2\overrightarrow {QA} + \overrightarrow {QB} = \overrightarrow 0 ;\) \(\overrightarrow {RA} - 3\overrightarrow {RB} = \overrightarrow 0 \)
b) Với điểm \(O\) bất kì và với ba điểm \(P, Q, R\) ở câu a), chứng minh rằng:
\(\overrightarrow {OP} = \dfrac{2}{5}\overrightarrow {OA} + \dfrac{3}{5}\overrightarrow {OB};\) \(\overrightarrow {OQ} = 2\overrightarrow {OA} - \overrightarrow {OB};\) \(\overrightarrow {OR} = - \dfrac{1}{2}\overrightarrow {OA} + \dfrac{3}{2}\overrightarrow {OB} \).
Advertisements (Quảng cáo)
a) Ta có
\(\eqalign{
& 2\overrightarrow {PA} + 3\overrightarrow {PB} = \overrightarrow 0 \cr
& \, \Leftrightarrow \,\,\,2\overrightarrow {PA} + 3(\overrightarrow {PA} + \overrightarrow {AB} ) = \overrightarrow 0 \cr
& \Leftrightarrow \,\,5\overrightarrow {PA} + 3\overrightarrow {AB} = \overrightarrow 0 \cr
& \Leftrightarrow \,\,\,\overrightarrow {AP} = {3 \over 5}\overrightarrow {AB} . \cr
& - 2\overrightarrow {QA} + \overrightarrow {QB} = \overrightarrow 0 \, \cr
& \Leftrightarrow \,\, - 2\overrightarrow {QA} + \overrightarrow {QA} + \overrightarrow {AB} = \overrightarrow 0 \, \cr
& \Leftrightarrow \,\,\,\overrightarrow {AQ} = \overrightarrow {BA} \cr
& \overrightarrow {RA} - 3\overrightarrow {RB} = \overrightarrow 0 \, \cr
& \Leftrightarrow \,\,\overrightarrow {RA} - 3(\overrightarrow {RA} + \overrightarrow {AB} ) = \overrightarrow 0 \cr
& \Leftrightarrow \,\,\overrightarrow {AR} = {3 \over 2}\overrightarrow {AB} . \cr} \)
b) Ta có
\(\eqalign{
& 2\overrightarrow {PA} + 3\overrightarrow {PB} = \overrightarrow 0 \, \cr
& \Leftrightarrow 2(\overrightarrow {OA} - \overrightarrow {OP} ) + 3(\overrightarrow {OB} - \overrightarrow {OP} ) = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {OP} = {2 \over 5}\overrightarrow {OA} + {3 \over 5}\overrightarrow {OB} ; \cr
& - 2\overrightarrow {QA} + \overrightarrow {QB} = \overrightarrow 0 \cr
& \Leftrightarrow - 2(\overrightarrow {OA} - \overrightarrow {OQ} ) + (\overrightarrow {OB} - \overrightarrow {OQ} ) = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {OQ} = 2\overrightarrow {OA} - \overrightarrow {OB} ; \cr
& \overrightarrow {RA} - 3\overrightarrow {RB} = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {OA} - \overrightarrow {OR} - 3(\overrightarrow {OB} - \overrightarrow {OR} ) = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {OR} = - {1 \over 2}\overrightarrow {OA} + {3 \over 2}\overrightarrow {OB} . \cr} \)