Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 25 trang 9 SBT Hình 10 nâng cao

Bài 25 trang 9 SBT Hình 10 nâng cao...

Bài 25 trang 9 SBT Hình học 10 Nâng cao. Bài 4. Tích của một vec tơ với một số.

Cho hai điểm phân biệt \(A, B\).

a) Hãy  xác định các điểm \(P, Q, R\), biết

\(2\overrightarrow {PA}  + 3\overrightarrow {PB}  = \overrightarrow 0;\) \(- 2\overrightarrow {QA}  + \overrightarrow {QB}  = \overrightarrow 0 ;\) \(\overrightarrow {RA}  - 3\overrightarrow {RB}  = \overrightarrow 0 \)

b) Với điểm \(O\) bất kì và với ba điểm \(P, Q, R\) ở câu a), chứng minh rằng:

\(\overrightarrow {OP}  = \dfrac{2}{5}\overrightarrow {OA}  + \dfrac{3}{5}\overrightarrow {OB};\) \(\overrightarrow {OQ}  = 2\overrightarrow {OA}  - \overrightarrow {OB};\) \(\overrightarrow {OR}  =  - \dfrac{1}{2}\overrightarrow {OA}  + \dfrac{3}{2}\overrightarrow {OB} \).

Advertisements (Quảng cáo)

a) Ta có

\(\eqalign{
& 2\overrightarrow {PA} + 3\overrightarrow {PB} = \overrightarrow 0 \cr
& \, \Leftrightarrow \,\,\,2\overrightarrow {PA} + 3(\overrightarrow {PA} + \overrightarrow {AB} ) = \overrightarrow 0 \cr
& \Leftrightarrow \,\,5\overrightarrow {PA} + 3\overrightarrow {AB} = \overrightarrow 0 \cr
& \Leftrightarrow \,\,\,\overrightarrow {AP} = {3 \over 5}\overrightarrow {AB} . \cr
& - 2\overrightarrow {QA} + \overrightarrow {QB} = \overrightarrow 0 \, \cr
& \Leftrightarrow \,\, - 2\overrightarrow {QA} + \overrightarrow {QA} + \overrightarrow {AB} = \overrightarrow 0 \, \cr
& \Leftrightarrow \,\,\,\overrightarrow {AQ} = \overrightarrow {BA} \cr
& \overrightarrow {RA} - 3\overrightarrow {RB} = \overrightarrow 0 \, \cr
& \Leftrightarrow \,\,\overrightarrow {RA} - 3(\overrightarrow {RA} + \overrightarrow {AB} ) = \overrightarrow 0 \cr
& \Leftrightarrow \,\,\overrightarrow {AR} = {3 \over 2}\overrightarrow {AB} . \cr} \)

b) Ta có

\(\eqalign{
& 2\overrightarrow {PA} + 3\overrightarrow {PB} = \overrightarrow 0 \, \cr
& \Leftrightarrow 2(\overrightarrow {OA} - \overrightarrow {OP} ) + 3(\overrightarrow {OB} - \overrightarrow {OP} ) = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {OP} = {2 \over 5}\overrightarrow {OA} + {3 \over 5}\overrightarrow {OB} ; \cr
& - 2\overrightarrow {QA} + \overrightarrow {QB} = \overrightarrow 0 \cr
& \Leftrightarrow - 2(\overrightarrow {OA} - \overrightarrow {OQ} ) + (\overrightarrow {OB} - \overrightarrow {OQ} ) = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {OQ} = 2\overrightarrow {OA} - \overrightarrow {OB} ; \cr
& \overrightarrow {RA} - 3\overrightarrow {RB} = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {OA} - \overrightarrow {OR} - 3(\overrightarrow {OB} - \overrightarrow {OR} ) = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {OR} = - {1 \over 2}\overrightarrow {OA} + {3 \over 2}\overrightarrow {OB} . \cr} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)