Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 30 trang 10 SBT Hình học 10 Nâng cao:  

Bài 30 trang 10 SBT Hình học 10 Nâng cao:  ...

Bài 30 trang 10 SBT Hình học 10 Nâng cao. Đặt \(\overrightarrow {OA}  = \overrightarrow a \,;\,\,\overrightarrow {OB}  = \overrightarrow b \,\,;\,\,\,\overrightarrow {OD}  = k\overrightarrow a \), khi đó \(\overrightarrow {OC}  = k\overrightarrow b \) (vì. Bài 4. Tích của một vec tơ với một số.

Cho hình thang \(ABCD\) với các cạnh đáy là \(AB\) và \(CD\) (các cạnh bên không song song). Chứng minh rằng nếu cho trước một điểm \(M\) nằm giữa hai điểm hai điểm \(A, D\) thì có một điểm \(N\) nằm trên cạnh \(BC\) sao cho \(AN//MC\) và \(DN//MB.\)

 

Gọi \(O\) là giao điểm của hai đường thẳng \(AD\) và \(BC\).

Đặt \(\overrightarrow {OA}  = \overrightarrow a \,;\,\,\overrightarrow {OB}  = \overrightarrow b \,\,;\,\,\,\overrightarrow {OD}  = k\overrightarrow a \), khi đó \(\overrightarrow {OC}  = k\overrightarrow b \) (vì \(AB//CD\)). Giả sử \(\overrightarrow {OM}  = m\overrightarrow a \). Ta xác định điểm \(N\) trên \(BC\) sao cho \(AN//CM\). Ta chứng minh rằng \(DN//BM\).

Vì \(N\) nằm trên \(BC\) nên \(\overrightarrow {ON}  = n\overrightarrow b \). Khi đó

\(\overrightarrow {AN}  = \overrightarrow {ON}  - \overrightarrow {OA}  = n\overrightarrow b  - \overrightarrow a \)

Mặt khác \(\overrightarrow {CM}  = \overrightarrow {OM}  - \overrightarrow {OC}  = m\overrightarrow a  - k\overrightarrow b \).

Advertisements (Quảng cáo)

Vì \(AN//CM\) nên hai vec tơ \(\overrightarrow {AN} \\,\,\overrightarrow {CM} \) cùng phương, tức là \(\dfrac{n}{{ - k}} = \dfrac{{ - 1}}{m}\) hay \(n = \dfrac{k}{m}\). 

Vậy \(\overrightarrow {ON}  = \dfrac{k}{m}\overrightarrow b \). Từ đó \(\overrightarrow {DN}  = \overrightarrow {ON}  - \overrightarrow {OD}  = \dfrac{k}{m}\overrightarrow b  - k\overrightarrow a \).

Lại có \(\overrightarrow {BM}  = \overrightarrow {OM}  - \overrightarrow {OB}\)

\(  = m\overrightarrow a  - \overrightarrow b\)

\(  =  - \dfrac{m}{k}\left( {\dfrac{k}{m}\overrightarrow b  - k\overrightarrow a } \right)\)

\(=  - \dfrac{m}{k}\overrightarrow {DN} \)

Vậy \(\overrightarrow {BM} \\,\,\overrightarrow {DN} \) cùng phương hay \(BM//DN.\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)