Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 38 trang 106 SBT Hình 10 nâng cao: (h.101).

Bài 38 trang 106 SBT Hình 10 nâng cao: (h.101)....

Bài 38 trang 106 SBT Hình học 10 Nâng cao. \(\alpha (x + 4) + \beta (y - 5) = 0 \). Bài 3. Khoảng cách và góc.

Cho hình vuông có đỉnh \(A=(-4 ; 5)\) và một đường chéo nằm trên đường thẳng có phương trình \(7x-y+8=0\). Lập phương trình các đường thẳng chứa các cạnh và đường chéo thứ hai của hình vuông.

(h.101).

 

Nhận thấy \(A \notin \Delta : 7x - y + 8 = 0\). Vậy \(B, D  \in \Delta \).

\(\Delta \) có vec tơ chỉ phương \(\overrightarrow u (1 ; 7)\). Phương trình đường chéo \(AC\) là:

\(1(x + 4) + 7(y - 5) = 0\)

\(\Leftrightarrow x + 7y - 31 = 0\).

Tọa độ giao điểm \(I\) của \(AC\) và \(BD\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}7x - y + 8 = 0\\x + 7y - 31 = 0\end{array} \right.     \Leftrightarrow   \left\{ \begin{array}{l}x =  -  \dfrac{1}{2}\\y =  \dfrac{9}{2}\end{array} \right.\).  Vậy \(I\left( { -  \dfrac{1}{2} ;  \dfrac{9}{2}} \right)\)

Suy ra tọa độ của \(C\) là \((3 ; 4)\).

Vì \(ABCD\) là hình vuông nên \(AC\) tạo với các đường thẳng \(AB\) và \(AD\) các góc \(45^0\). Đường thẳng \(d\) đi qua \(A(-4 ; 5)\) có phương trình:

Advertisements (Quảng cáo)

\(\alpha (x + 4) + \beta (y - 5) = 0 \)

\(\Leftrightarrow    \alpha x + \beta y + 4\alpha  - 5\beta  = 0\) \(({\alpha ^2} + {\beta ^2} \ne 0)\).

D tạo với \(AC\) một góc \(45^0\) khi và chỉ khi \(\cos {45^0} =  \dfrac{{|\alpha  + 7\beta |}}{{\sqrt {50.} \sqrt {{\alpha ^2} + {\beta ^2}} }}\)

\( \Leftrightarrow     \dfrac{1}{{\sqrt 2 }} =  \dfrac{{|\alpha  + 7\beta |}}{{\sqrt {50} .\sqrt {{\alpha ^2} + {\beta ^2}} }}\)

\(\Leftrightarrow    12{\alpha ^2} - 7\alpha \beta  - 12{\beta ^2} = 0\)

\(\Leftrightarrow   \left[ \begin{array}{l}\alpha  =  \dfrac{4}{3}\beta \\\alpha  =  -  \dfrac{3}{4}\beta \end{array} \right.\)

Với \(\alpha  =  \dfrac{4}{3}\beta \), ta chọn \(\beta  = 3, \alpha  = 4\) ta được đường thẳng \({d_1}: 4x + 3y + 1 = 0\).

Với \(\alpha  =  -  \dfrac{3}{4}\beta \), ta chọn \(\beta  =  - 4, \alpha  = 3\) ta được đường thẳng \({d_2}: 3x - 4y + 32 = 0\).

Lấy phương trình \(AB\) là :\(4x+3y+1=0\) thì phương trình \(AD\) là \(3x-4y+32=0.\)

Do đó ta viết được phương trình của \(CD\) và \(BC\) lần lượt là \(4x+3y-24=0\) và \(3x-4y+7=0.\) (Lấy phương trình \(AD\) là \(4x+3y+1=0\) thì phương trình của \(AB\) là \(3x-4y+32=0\) và ta cũng có kết quả tương tự).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)