Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 87 trang 51 Sách bài tập Toán Nâng cao Hình 10:...

Bài 87 trang 51 Sách bài tập Toán Nâng cao Hình 10: Áp dụng định lí cosin, ta có...

Bài 87 trang 51 SBT Hình học 10 Nâng cao. b) Tính \(\tan C.\). Bài tập Ôn tập chương II - Tích vô hướng của hai vectơ và ứng dụng

Biết rằng tam giác \(ABC\) có \(AB=10, AC=4\) và \(\widehat A = {60^0}\).

a) Tính chu vi của tam giác.

b) Tính \(\tan C.\)

c) Lấy điểm \(D\) trên tia đối của tia \(AB\) sao cho \(AD=6\) và điểm \(E\) trên tia \(AC\) sao cho \(AE=x\). Tìm \(x\) để \(BE\) là tiếp tuyến của đường tròn \((ADE)\) (\((ADE)\) là đường tròn ngoại tiếp tam giác \(ADE\)).

Giải

a) Ta đi tìm độ dài cạnh \(BC\).

Áp dụng định lí cosin, ta có

\(B{C^2} = {10^2} + {4^2} - 2.4.10.\cos {60^0} = 76\)

Suy ra \(BC \approx 8,72\).

Chu vi tam giác \(2p \approx 10 + 4 + 8,72 \approx 22,72\).

b) (h.73).

Advertisements (Quảng cáo)

Kẻ đường cao \(BH\) ta có \(AH = AB. \cos {60^0} = 5\), suy ra \(HC=5-4=1.\)

\(BH = AB.\sin {60^0} = 5\sqrt 3 ,\) \(  \tan C =  - \tan \widehat {BCH} =  - \dfrac{{HB}}{{HC}}\)\( =  - 5\sqrt 3 \).

c) (h.74).

 

Để \(BE\) là tiếp tuyến của đường tròn \((ADE)\) phải có \(B{E^2} = BA.BD = 10(10 + 6) = 160\).

Ta có \(AE = x\), áp dụng định lí cosin cho tam giác \(ABE\) :

\(B{E^2} = {x^2} + 100 - 10x\).

Từ đó có phương trình: \({x^2} - 10x + 100 - 160\) hay \({x^2} - 10 - 60 = 0\), phương trình này có một nghiệm dương là \(x = 5 + \sqrt {85} \). Vậy điểm \(E\) cần tìm là điểm trên tia \(AC\) và cách \(A\) một khoảng bằng \(5 + \sqrt {85} \).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: