Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 2.28 trang 34 Sách BT Đại số 10 Nâng cao: Khảo...

Câu 2.28 trang 34 Sách BT Đại số 10 Nâng cao: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau :...

Câu 2.28 trang 34 SBT Đại số 10 Nâng cao. 0. Bài 3. Hàm số bậc hai

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau :

a. \(y = {x^2} + x + 1;\)

b. \(y =  - 2{x^2} + x - 2;\)

c. \(y =  - {x^2} + 2x - 1;\)

d. \(y = {1 \over 2}{x^2} - x + 2.\)

a. Ta có thể viết hàm số \(y = {x^2} + x + 1\) dưới dạng

\(y = {\left( {x + {1 \over 2}} \right)^2} + {3 \over 4}\)

Từ đó suy ra đồ thị của nó là một parabol hướng bề lõm lên trên và có đỉnh tại \(\left( { - {1 \over 2};{3 \over 4}} \right)\) ; hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ; - {1 \over 2}} \right)\) , đồng biến trên khoảng \(\left( { - {1 \over 2}; + \infty } \right)\)

và có giá trị nhỏ nhất bằng \({3 \over 4}\) khi \(x =  - {1 \over 2}.\)

Để vẽ đồ thị của hàm số này, ta lập bảng một vài giá trị của nó như sau

\(x\)

-2

-1

\( - {1 \over 2}\)

0

1

\(y\)

Advertisements (Quảng cáo)

3

1

\({3 \over 4}\)

1

3

 Đồ thị của hàm số có dạng như hình sau:

b. Đưa hàm số đã cho về dạng \(y =  - 2{\left( {x - {1 \over 4}} \right)^2} - {{15} \over 8}.\) Từ đó suy ra hàm số đồng biến trên khoảng \(\left( { - \infty ;{1 \over 4}} \right)\) , nghịch biến trên khoảng \(\left( {{1 \over 4}; + \infty } \right)\) và có giá trị lớn nhất bằng \( - {{15} \over 8}\) khi \(x = {1 \over 4}.\).

Đồ thị hàm số:

c. 

Hàm số \(y =  - {x^2} + 2x - 1\) đồng biến trên khoảng \(\left( { - \infty ;2} \right)\); nghịch biến trên khoảng \(\left( {2; + \infty } \right)\).

Đồ thị hàm số:

d. Hàm số \(y = {1 \over 2}{x^2} - x + 2.\) đồng biến trên khoảng \(\left( {1; + \infty } \right)\); nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\)

Đồ thị hàm số:

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)