Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 2.29 trang 34 SBT Toán Đại 10 Nâng cao: Bảng biến...

Câu 2.29 trang 34 SBT Toán Đại 10 Nâng cao: Bảng biến thiên :...

Câu 2.29 trang 34 SBT Đại số 10 Nâng cao. Hàm số có giá trị lớn nhất bằng 1 khi \(x = 2.\). Bài 3. Hàm số bậc hai

Cho hàm số \(y =  - {x^2} + 4x - 3\)

a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

b. Dựa vào đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị dương.

c. Dựa vào đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị âm.

a. Hàm số \(y =  - {x^2} + 4x - 3\) có thể viết được dưới dạng

\(y =  - {\left( {x - 2} \right)^2} + 1\)

Từ đó suy ra hàm số đồng biến trên khoảng \(\left( { - \infty ;2} \right),\) nghịch biến trên khoảng \(\left( {2; + \infty } \right).\)

Bảng biến thiên :

Advertisements (Quảng cáo)

Hàm số có giá trị lớn nhất bằng 1 khi \(x = 2.\)

Đồ thị của nó là một parabol đi qua các điểm

\((0 ; -3), (1 ; 0),\) \( (2 ; 1), (3 ; 0), (4 ; -3)\)

Từ đồ thị ta thấy :

b. Hàm số chỉ nhận giá trị dương nếu \(x \in (1 ; 3).\)

c. Hàm số chỉ nhận giá trị âm nếu

\(x \in \left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)