Giải các phương trình sau:
a. \(\left\{ {\begin{array}{*{20}{c}}{2x - y - 7 = 0}\\{{y^2} - {x^2} + 2x + 2y + 4 = 0}\end{array}} \right.\)
b. \(\left\{ {\begin{array}{*{20}{c}}{4x + 9y = 6}\\{3{x^2} + 6xy - x + 3y = 0}\end{array}} \right.\)
c. \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} + x + y + 1 = 0}\\{{x^2} + 12x + 2y + 10 = 0}\end{array}} \right.\)
Advertisements (Quảng cáo)
a. Thế \(y = 2x – 7\) vào phương trình thứ hai dẫn đến phương trình bậc hai của \(x\). Từ đó hệ có nghiệm là \(\left( {\dfrac{{13}}{3};\dfrac{5}{3}} \right)\) và \(\left( {3; - 1} \right)\)
b. Tương tự, thế \(y = \dfrac{{6 - 4x{\rm}}}{9}.\) Hệ có nghiệm là \(\left( { - 3;2} \right)\) và \(\left( { - 2;\dfrac{{14}}{9}} \right)\)
c. Nhân phương trình thứ nhất với 2 rồi trừ vào phương trình thứ hai ta được \(3x^2 - 10x - 8 = 0.\) Từ đó hệ có nghiệm \(\left( {4; - 37} \right)\) và \(\left( { - \dfrac{2}{3}; - \dfrac{{11}}{9}} \right)\).