Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 4.24 trang 105 SBT Toán Đại 10 Nâng cao: Cho a,...

Câu 4.24 trang 105 SBT Toán Đại 10 Nâng cao: Cho a, b, c là ba số dương. Tìm giá trị nhỏ nhất của...

Câu 4.24 trang 105 SBT Đại số 10 Nâng cao. \(\begin{array}{l}A = \dfrac{{ - x + y + {\rm{z}}}}{2} + \dfrac{{{\rm{x}} - y + {\rm{z}}}}{2} + \dfrac{{{\rm{x}} + y - z}}{2}\\ = \dfrac{1}{2}\left( {\dfrac{{\rm{x}}}{y} + \dfrac{y}{x}. Bài 1. Bất đẳng thức và chứng minh bất đẳng thức

Cho a, b, c là ba số dương. Tìm giá trị nhỏ nhất của

\(A = \dfrac{a}{{b + c}} + \dfrac{b}{{c + a}} + \dfrac{c}{{a + b}}.\)

:

Đặt \(b + c = x,c + a = y;a + b = z.\) Do \(a, b, c\) dương nên \(x, y, z\) dương và

\(a = \dfrac{{ - x + y + {\rm{z}}}}{2};b = \dfrac{{{\rm{x}} - y + {\rm{z}}}}{2};c = \dfrac{{{\rm{x}} + y - z}}{2}.\) Khi đó ta có

\(\begin{array}{l}A = \dfrac{{ - x + y + {\rm{z}}}}{2} + \dfrac{{{\rm{x}} - y + {\rm{z}}}}{2} + \dfrac{{{\rm{x}} + y - z}}{2}\\ = \dfrac{1}{2}\left( {\dfrac{{\rm{x}}}{y} + \dfrac{y}{x} + \dfrac{{\rm{x}}}{z} + \dfrac{{\rm{z}}}{x} + \dfrac{y}{z} + \dfrac{{\rm{z}}}{y} - 3} \right)\\ \ge \dfrac{1}{2}.\left( {2.3 - 3} \right) = \dfrac{3}{2}.\end{array}\)

Học sinh tự giải tiếp.

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: