Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 4.86 trang 116 SBT Đại số 10 Nâng cao: Tìm giá...

Câu 4.86 trang 116 SBT Đại số 10 Nâng cao: Tìm giá trị nhỏ nhất của các biểu thức :...

Câu 4.86 trang 116 SBT Đại số 10 Nâng cao. Vậy B nhỏ nhất bằng -14 khi \(a = 0, b = 1.\). Bài tập Ôn tập chương IV - Bất đẳng thức và bất phương trình

Tìm giá trị nhỏ nhất của các biểu thức :

a. \(A = {a^2} + {b^2} + ab - 3a - 3b + 2006;\)

b. \(B = {a^2} + 2{b^2} - 2ab + 2a - 4b - 12.\)

:

a. Ta có:

\(\begin{array}{l}A = {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} + ab - a - b + 2004\\ = {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} + \left( {a - 1} \right)\left( {b - 1} \right) + 2003\\ = {\left[ {\left( {a - 1} \right) + \dfrac{{b - 1}}{2}} \right]^2} + \dfrac{3}{4}{\left( {b - 1} \right)^2} + 2003 \ge 2003\end{array}\)

Advertisements (Quảng cáo)

Dấu bằng xảy ra khi

\(\left\{ {\begin{array}{*{20}{c}}{a - 1 + \dfrac{{b - 1}}{2} = 0}\\{b - 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 1.}\end{array}} \right.\)

Vậy A nhỏ nhất bằng 2003 khi \(a = b = 1.\)

b. \(B = {\left( {a - b + 1} \right)^2} + {\left( {b - 1} \right)^2} - 14 \ge  - 14.\)

Vậy B nhỏ nhất bằng -14 khi \(a = 0, b = 1.\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)