Cho hai tam giác ABC và A’B’C’. Chứng minh rằng nếu \(\overrightarrow {AA’} + \overrightarrow {BB’} + \overrightarrow {CC’} = \overrightarrow 0 \) thì hai tam giác đó có cùng trọng tâm.
Gợi ý làm bài
Gọ G và G’ lần lượt là trọng tâm của hai tam giác ABC và A’B’C’. Ta có:
\(\overrightarrow {AA’} = \overrightarrow {AG} + \overrightarrow {GG’} + \overrightarrow {G’A’} \)
\(\overrightarrow {BB’} = \overrightarrow {BG} + \overrightarrow {GG’} + \overrightarrow {G’B’} \)
Advertisements (Quảng cáo)
\(\overrightarrow {CC’} = \overrightarrow {CG} + \overrightarrow {GG’} + \overrightarrow {G’C’} \)
Cộng từng vế của ba đẳng thức trên ta được
\(\overrightarrow {AA’} + \overrightarrow {BB’} + \overrightarrow {CC’} = 3\overrightarrow {GG’} \)
Do đó, nếu \(\overrightarrow {AA’} + \overrightarrow {BB’} + \overrightarrow {CC’} = \overrightarrow 0 \) thì \(\overrightarrow {GG’} = \overrightarrow 0 \) hay G = G’
Chú ý: Từ chứng minh trên cũng suy ra rằng nếu hai tam giác ABC và A’B’C’ có cùng trọng tâm thì \(\overrightarrow {AA’} + \overrightarrow {BB’} + \overrightarrow {CC’} = \overrightarrow 0 \)