Bài 6. Trong mặt phẳng tọa độ \(Oxy\), cho ba điểm \(A( - 1\,;3)\,\,B(4\,;2)\,\,C(3\,;5)\).
a) Chứng minh rằng ba điểm \(A, B, C\) không thẳng hàng.
b) Tìm tọa độ điểm \(D\) sao cho \(\overrightarrow {AD} = - 3\overrightarrow {BC} \).
c) Tìm tọa độ điểm \(E\) sao cho \(O\) là trọng tâm tam giác \(ABE\).
a) Ta có
Advertisements (Quảng cáo)
\(\eqalign{
& \overrightarrow {AB} = (4 + \,1\,;\,2 - 3) = (5\,;\, - 1) \cr
& \overrightarrow {AC} = (3 + 1\,;\,5 - 3) = (4\,;\,2) \cr} \)
Vì \({5 \over 4} \ne - {1 \over 2}\) nên \(\overrightarrow {AB} \,\,\overrightarrow {AC} \) không cùng phương. Do đó, \(A, B, C\) không thẳng hàng.
b) Giả sử \(D\,({x_D}\,;\,{y_D})\). Ta có
\(\eqalign{
& \overrightarrow {AD} = - 3\overrightarrow {BC} \,\, \Leftrightarrow \,\left\{ \matrix{
{x_D} + 1 = 3 \hfill \cr
{y_D} - 3 = - 9 \hfill \cr} \right.\, \Leftrightarrow \,\left\{ \matrix{
{x_D} = 2 \hfill \cr
{y_D} = - 6 \hfill \cr} \right. \cr
& \Rightarrow \,\,D(2\,;\, - 6). \cr} \)
C) Giả sử \(E({x_E}\,;\,{y_E})\). Ta có
\(\eqalign{
& \,\left\{ \matrix{
0 = {1 \over 3}( - 1 + 4 + {x_E}) \hfill \cr
0 = {1 \over 3}(3 + 2 + {y_E}) \hfill \cr} \right.\, \Leftrightarrow \,\left\{ \matrix{
{x_E} = - 3 \hfill \cr
{y_E} = - 5 \hfill \cr} \right. \cr
& \Rightarrow \,\,E( - 3\,;\, - 5). \cr} \)